Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Gastroenterology ; 161(4): 1179-1193, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34197832

RESUMEN

BACKGROUND & AIMS: Colorectal cancer (CRC) shows variable response to immune checkpoint blockade, which can only partially be explained by high tumor mutational burden (TMB). We conducted an integrated study of the cancer tissue and associated tumor microenvironment (TME) from patients treated with pembrolizumab (KEYNOTE 177 clinical trial) or nivolumab to dissect the cellular and molecular determinants of response to anti- programmed cell death 1 (PD1) immunotherapy. METHODS: We selected multiple regions per tumor showing variable T-cell infiltration for a total of 738 regions from 29 patients, divided into discovery and validation cohorts. We performed multiregional whole-exome and RNA sequencing of the tumor cells and integrated these with T-cell receptor sequencing, high-dimensional imaging mass cytometry, detection of programmed death-ligand 1 (PDL1) interaction in situ, multiplexed immunofluorescence, and computational spatial analysis of the TME. RESULTS: In hypermutated CRCs, response to anti-PD1 immunotherapy was not associated with TMB but with high clonality of immunogenic mutations, clonally expanded T cells, low activation of Wnt signaling, deregulation of the interferon gamma pathway, and active immune escape mechanisms. Responsive hypermutated CRCs were also rich in cytotoxic and proliferating PD1+CD8 T cells interacting with PDL1+ antigen-presenting macrophages. CONCLUSIONS: Our study clarified the limits of TMB as a predictor of response of CRC to anti-PD1 immunotherapy. It identified a population of antigen-presenting macrophages interacting with CD8 T cells that consistently segregate with response. We therefore concluded that anti-PD1 agents release the PD1-PDL1 interaction between CD8 T cells and macrophages to promote cytotoxic antitumor activity.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Fenómenos Inmunogenéticos , Inmunogenética , Nivolumab/uso terapéutico , Microambiente Tumoral , Anticuerpos Monoclonales Humanizados/efectos adversos , Biomarcadores de Tumor/genética , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Ensayos Clínicos como Asunto , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Citotoxicidad Inmunológica/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Mutación , Nivolumab/efectos adversos , Valor Predictivo de las Pruebas , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , RNA-Seq , Reproducibilidad de los Resultados , Factores de Tiempo , Transcriptoma , Resultado del Tratamiento , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Secuenciación del Exoma
2.
Nat Commun ; 13(1): 781, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140207

RESUMEN

Multiplexed imaging technologies enable the study of biological tissues at single-cell resolution while preserving spatial information. Currently, high-dimension imaging data analysis is technology-specific and requires multiple tools, restricting analytical scalability and result reproducibility. Here we present SIMPLI (Single-cell Identification from MultiPLexed Images), a flexible and technology-agnostic software that unifies all steps of multiplexed imaging data analysis. After raw image processing, SIMPLI performs a spatially resolved, single-cell analysis of the tissue slide as well as cell-independent quantifications of marker expression to investigate features undetectable at the cell level. SIMPLI is highly customisable and can run on desktop computers as well as high-performance computing environments, enabling workflow parallelisation for large datasets. SIMPLI produces multiple tabular and graphical outputs at each step of the analysis. Its containerised implementation and minimum configuration requirements make SIMPLI a portable and reproducible solution for multiplexed imaging data analysis. Software is available at "SIMPLI [ https://github.com/ciccalab/SIMPLI ]".


Asunto(s)
Diagnóstico por Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Análisis de la Célula Individual , Anticuerpos , Colon/diagnóstico por imagen , Colon/patología , Análisis de Datos , Humanos , Mucosa Intestinal/diagnóstico por imagen , Mucosa Intestinal/patología , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Reproducibilidad de los Resultados , Programas Informáticos , Linfocitos T/patología , Flujo de Trabajo
3.
Nat Commun ; 10(1): 3101, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308377

RESUMEN

The identification of cancer-promoting genetic alterations is challenging particularly in highly unstable and heterogeneous cancers, such as esophageal adenocarcinoma (EAC). Here we describe a machine learning algorithm to identify cancer genes in individual patients considering all types of damaging alterations simultaneously. Analysing 261 EACs from the OCCAMS Consortium, we discover helper genes that, alongside well-known drivers, promote cancer. We confirm the robustness of our approach in 107 additional EACs. Unlike recurrent alterations of known drivers, these cancer helper genes are rare or patient-specific. However, they converge towards perturbations of well-known cancer processes. Recurrence of the same process perturbations, rather than individual genes, divides EACs into six clusters differing in their molecular and clinical features. Experimentally mimicking the alterations of predicted helper genes in cancer and pre-cancer cells validates their contribution to disease progression, while reverting their alterations reveals EAC acquired dependencies that can be exploited in therapy.


Asunto(s)
Adenocarcinoma/genética , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Neoplasias Esofágicas/genética , Perfilación de la Expresión Génica/métodos , Medicina de Precisión/métodos , Antineoplásicos/farmacología , Biomarcadores de Tumor/antagonistas & inhibidores , Biología Computacional/métodos , Conjuntos de Datos como Asunto , Progresión de la Enfermedad , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inestabilidad Genómica , Humanos , Aprendizaje Automático , Modelos Genéticos , Familia de Multigenes/efectos de los fármacos , Tasa de Mutación , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA