Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38475046

RESUMEN

Over the last decade, autoimmune diseases (ADs) have undergone a significant increase because of genetic and/or environmental factors; therefore, their simple and fast diagnosis is of high importance. The conventional diagnostic techniques for ADs require tedious sample preparation, sophisticated instruments, a dedicated laboratory, and qualified personnel. For these reasons, biosensors could represent a useful alternative to these methods. Biosensors are considered to be promising tools that can be used in clinical analysis for an early diagnosis due to their high sensitivity, simplicity, low cost, possible miniaturization (POCT), and potential ability for real-time analysis. In this review, recently developed biosensors for the detection of autoimmune disease biomarkers are discussed. In the first part, we focus on the main AD biomarkers and the current methods of their detection. Then, we discuss the principles and different types of biosensors. Finally, we overview the characteristics of biosensors based on different bioreceptors reported in the literature.


Asunto(s)
Enfermedades Autoinmunes , Técnicas Biosensibles , Humanos , Técnicas Electroquímicas/métodos , Biomarcadores/análisis , Diagnóstico Precoz , Técnicas Biosensibles/métodos , Enfermedades Autoinmunes/diagnóstico
2.
J Environ Manage ; 360: 121072, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733851

RESUMEN

Amoxicillin, a member of the penicillin family, is primarily utilized for the treatment of various bacterial infections affecting ears, nose, throat, urinary tract, and skin. Given its widespread application in medicine, agriculture, environment, and food industry, the precise and sensitive detection of amoxicillin is important. This study introduces a novel approach to developing a sensitive and selective fluorescent aptasensor relying on fluorescence resonance energy transfer (FRET) for the specific detection of amoxicillin. The carboxyfluorescein-labeled aptamer serves as a energy donor, while MXene functions as an energy acceptor, and acting as a quencher. To achieve optimal detection efficiency, a dual optimization strategy utilizing RSM-CCD and ANN-GA was used to fine-tune experimental conditions. The fluorescence measurements revealed an expansive linear range extending from 100 to 2400 ng mL-1, accompanied by an exceptionally low detection limit of 1.53 ng mL-1. Additionally, it shows an excellent selectivity towards amoxicillin over other antibiotics commonly found in water matrices. The aptasensor demonstrates good stability and reproducibility; effectiveness of the aptasensor was validated by testing in real water samples. This remarkable sensitivity and broad dynamic range affirm the efficacy aptasensor in accurately detecting varying concentrations of amoxicillin in wastewater bodies.


Asunto(s)
Amoxicilina , Técnicas Biosensibles , Amoxicilina/análisis , Amoxicilina/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Aptámeros de Nucleótidos/química , Fluorescencia , Contaminantes Químicos del Agua/análisis , Agua/química
3.
Analyst ; 148(16): 3899-3908, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37466196

RESUMEN

The unbalanced hemoglobin level in biological fluids can cause several diseases; hence it can be used as a biomarker for diagnosis. We aim, in the present study, to construct a label-free electrochemical aptasensor for the quantification of hemoglobin. For that, a conjugate of L-cysteine and gold nanoparticles was used for the aptamer immobilization on screen printed carbon electrodes. Using square wave voltammetry, the calibration plot was obtained and it was linear in the range of 50 ng ml-1 to 36 000 ng ml-1 while the detection limit was 1.2 ng ml-1. After the binding of Hb on the modified screen-printed carbon electrode surface, the peroxidase-like activity of the bound hemoglobin was explored in the quantification of different substrates. Hydrogen peroxide and nitrite were chosen as model analytes. Amperometric measurements showed wide linear ranges: 0.2 µM-7.7 mM and 3.6 nM-1.3 mM for H2O2 and nitrite, respectively, with detection limits of 0.044 µM and 0.55 nM. In the proposed strategy, the aptamer provides excellent orientation and a biocompatible environment for hemoglobin whose catalytic activity plays a key role in H2O2 and nitrite analysis.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Electroquímicas , Oro , Peróxido de Hidrógeno/análisis , Nitritos , Hemoglobinas/análisis , Carbono , Electrodos , Peroxidasas
4.
Sensors (Basel) ; 21(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672772

RESUMEN

Despite barrier measures and physical distancing tailored by the populations worldwide, coronavirus continues to spread causing severe health and social-economic problems. Therefore, researchers are focusing on developing efficient detection and therapeutic platforms for SARS-CoV2. In this context, various biotechnologies, based on novel molecules targeting the virus with high specificity and affinity, have been described. In parallel, new approaches exploring nanotechnology have been proposed for enhancing treatments and diagnosis. We discuss in the first part of this review paper, the different biosensing and rapid tests based on antibodies, nucleic acids and peptide probes described since the beginning of the pandemic. Furthermore, given their numerous advantages, the contribution of nanotechnologies is also highlighted.


Asunto(s)
Biotecnología/tendencias , COVID-19/diagnóstico , COVID-19/terapia , Nanotecnología/tendencias , Técnicas Biosensibles , Humanos
5.
Sensors (Basel) ; 22(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35009645

RESUMEN

Cadmium (Cd2+) is one of the most toxic heavy metals causing serious health problems; thus, designing accurate analytical methods for monitoring such pollutants is highly urgent. Herein, we report a label-free electrochemical aptasensor for cadmium detection in water. For this, a nanocomposite combining the advantages of gold nanoparticles (AuNPs), carbon nanotubes (CNTs) and chitosan (Cs) was constructed and used as immobilization support for the cadmium aptamer. First, the surface of a glassy carbon electrode (GCE) was modified with CNTs-CS. Then, AuNPs were deposited on CNTs-CS/GCE using chrono-amperometry. Finally, the immobilization of the amino-modified Cd-aptamer was achieved via glutaraldehyde cross-linking. The different synthesis steps of the AuNPs/CNTs/CS nano assembly were characterized by cyclic voltammetry (CV). Electrochemical impedance spectroscopy (EIS) was employed for cadmium determination. The proposed biosensor exhibited excellent performances for cadmium detection at a low applied potential (-0.5 V) with a high sensitivity (1.2 KΩ·M-1), a detection limit of 0.02 pM and a wide linear range (10-13-10-4 M). Moreover, the aptasensor showed a good selectivity against the interfering ions: Pb2+; Hg2+ and Zn2+. Our electrochemical biosensor provides a simple and sensitive approach for Cd2+ detection in aqueous solutions, with promising applications in the monitoring of trace amounts of heavy metals in real samples.


Asunto(s)
Técnicas Biosensibles , Quitosano , Nanopartículas del Metal , Nanocompuestos , Nanotubos de Carbono , Cadmio , Técnicas Electroquímicas , Electrodos , Oro , Agua
6.
Appl Biochem Biotechnol ; 194(5): 1925-1937, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34997905

RESUMEN

Dopamine (DA) is a catecholamine neurotransmitter playing an important role in different biological functions including central nervous, renal, cardiovascular, and hormonal systems. The sensitive and selective detection of this neurotransmitter plays a key role in the early diagnosis of various diseases related to abnormal levels of dopamine. Therefore, it is of great importance to explore rapid, simple, and accurate methods for detection of dopamine with high sensitivity and specificity. We propose in this work a fluorescent aptasensor based on graphene oxide (GO) as a quencher, for the rapid determination of dopamine. The principle of this aptasensor is based on fluorescence resonance energy transfer (FRET), where GO was used as energy donor, and a carboxy fluorescein (FAM)-labeled aptamer as acceptor. In the absence of DA, FAM-aptamer was adsorbed on the surface of GO through π-π stacking interactions between nucleotide bases and the carbon network, leading to a weak FRET and a quenching of the FAM fluorescence. However, by adding the target, the aptamer undergoes a conformational change to bind to DA with high affinity, resulting in a fluorescence recovery. Under the optimal experimental conditions, the fluorescence recovery was linearly proportional to the concentration of DA in the range of 3-1680 nM, with a limit of detection of 0.031 nM and a limit of quantification of 0.1 nM. Moreover, the developed assay exhibited minor response in the presence of various interferents and it revealed a satisfactory applicability in human serum samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Aptámeros de Nucleótidos/metabolismo , Técnicas Biosensibles/métodos , Colorantes , Dopamina , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Límite de Detección , Óxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA