Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 41: 431-452, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36750318

RESUMEN

The complement system is an ancient collection of proteolytic cascades with well-described roles in regulation of innate and adaptive immunity. With the convergence of a revolution in complement-directed clinical therapeutics, the discovery of specific complement-associated targetable pathways in the central nervous system, and the development of integrated multi-omic technologies that have all emerged over the last 15 years, precision therapeutic targeting in Alzheimer disease and other neurodegenerative diseases and processes appears to be within reach. As a sensor of tissue distress, the complement system protects the brain from microbial challenge as well as the accumulation of dead and/or damaged molecules and cells. Additional more recently discovered diverse functions of complement make it of paramount importance to design complement-directed neurotherapeutics such that the beneficial roles in neurodevelopment, adult neural plasticity, and neuroprotective functions of the complement system are retained.


Asunto(s)
Enfermedades Neuroinflamatorias , Neuroprotección , Humanos , Animales , Encéfalo , Proteínas del Sistema Complemento , Plasticidad Neuronal/fisiología , Microglía/fisiología
2.
Pharmacol Rev ; 73(2): 792-827, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33687995

RESUMEN

The complement system was discovered at the end of the 19th century as a heat-labile plasma component that "complemented" the antibodies in killing microbes, hence the name "complement." Complement is also part of the innate immune system, protecting the host by recognition of pathogen-associated molecular patterns. However, complement is multifunctional far beyond infectious defense. It contributes to organ development, such as sculpting neuron synapses, promoting tissue regeneration and repair, and rapidly engaging and synergizing with a number of processes, including hemostasis leading to thromboinflammation. Complement is a double-edged sword. Although it usually protects the host, it may cause tissue damage when dysregulated or overactivated, such as in the systemic inflammatory reaction seen in trauma and sepsis and severe coronavirus disease 2019 (COVID-19). Damage-associated molecular patterns generated during ischemia-reperfusion injuries (myocardial infarction, stroke, and transplant dysfunction) and in chronic neurologic and rheumatic disease activate complement, thereby increasing damaging inflammation. Despite the long list of diseases with potential for ameliorating complement modulation, only a few rare diseases are approved for clinical treatment targeting complement. Those currently being efficiently treated include paroxysmal nocturnal hemoglobinuria, atypical hemolytic-uremic syndrome, myasthenia gravis, and neuromyelitis optica spectrum disorders. Rare diseases, unfortunately, preclude robust clinical trials. The increasing evidence for complement as a pathogenetic driver in many more common diseases suggests an opportunity for future complement therapy, which, however, requires robust clinical trials; one ongoing example is COVID-19 disease. The current review aims to discuss complement in disease pathogenesis and discuss future pharmacological strategies to treat these diseases with complement-targeted therapies. SIGNIFICANCE STATEMENT: The complement system is the host's defense friend by protecting it from invading pathogens, promoting tissue repair, and maintaining homeostasis. Complement is a double-edged sword, since when dysregulated or overactivated it becomes the host's enemy, leading to tissue damage, organ failure, and, in worst case, death. A number of acute and chronic diseases are candidates for pharmacological treatment to avoid complement-dependent damage, ranging from the well established treatment for rare diseases to possible future treatment of large patient groups like the pandemic coronavirus disease 2019.


Asunto(s)
COVID-19/epidemiología , COVID-19/fisiopatología , Proteínas del Sistema Complemento/fisiología , Enfermedades Raras/fisiopatología , Colectinas/metabolismo , Enzimas Activadoras de Complemento/metabolismo , Complemento C3/metabolismo , Inactivadores del Complemento/farmacología , Terapia Genética/métodos , Humanos , Mediadores de Inflamación/metabolismo , Lectinas/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Pandemias , SARS-CoV-2 , Sinapsis/metabolismo , Ficolinas
3.
Alzheimers Dement ; 20(3): 2173-2190, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38278523

RESUMEN

INTRODUCTION: Synaptic loss is a hallmark of Alzheimer's disease (AD) that correlates with cognitive decline in AD patients. Complement-mediated synaptic pruning has been associated with this excessive loss of synapses in AD. Here, we investigated the effect of C5aR1 inhibition on microglial and astroglial synaptic pruning in two mouse models of AD. METHODS: A combination of super-resolution and confocal and tridimensional image reconstruction was used to assess the effect of genetic ablation or pharmacological inhibition of C5aR1 on the Arctic48 and Tg2576 models of AD. RESULTS: Genetic ablation or pharmacological inhibition of C5aR1 partially rescues excessive pre-synaptic pruning and synaptic loss in an age and region-dependent fashion in two mouse models of AD, which correlates with improved long-term potentiation (LTP). DISCUSSION: Reduction of excessive synaptic pruning is an additional beneficial outcome of the suppression of C5a-C5aR1 signaling, further supporting its potential as an effective targeted therapy to treat AD. HIGHLIGHTS: C5aR1 ablation restores long-term potentiation in the Arctic model of AD. C5aR1 ablation rescues region specific excessive pre-synaptic loss. C5aR1 antagonist, PMX205, rescues VGlut1 loss in the Tg2576 model of AD. C1q tagging is not sufficient to induce VGlut1 microglial ingestion. Astrocytes contribute to excessive pre-synaptic loss at late stages of the disease.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Humanos , Enfermedad de Alzheimer/genética , Sinapsis , Potenciación a Largo Plazo , Modelos Animales de Enfermedad
4.
Alzheimers Dement ; 20(7): 4935-4950, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38572865

RESUMEN

INTRODUCTION: Emerging evidence links changes in the gut microbiome to late-onset Alzheimer's disease (LOAD), necessitating examination of AD mouse models with consideration of the microbiome. METHODS: We used shotgun metagenomics and untargeted metabolomics to study the human amyloid beta knock-in (hAß-KI) murine model for LOAD compared to both wild-type (WT) mice and a model for early-onset AD (3xTg-AD). RESULTS: Eighteen-month female (but not male) hAß-KI microbiomes were distinct from WT microbiomes, with AD genotype accounting for 18% of the variance by permutational multivariate analysis of variance (PERMANOVA). Metabolomic diversity differences were observed in females, however no individual metabolites were differentially abundant. hAß-KI mice microbiomes were distinguishable from 3xTg-AD animals (81% accuracy by random forest modeling), with separation primarily driven by Romboutsia ilealis and Turicibacter species. Microbiomes were highly cage specific, with cage assignment accounting for more than 40% of the PERMANOVA variance between the groups. DISCUSSION: These findings highlight a sex-dependent variation in the microbiomes of hAß-KI mice and underscore the importance of considering the microbiome when designing studies that use murine models for AD. HIGHLIGHTS: Microbial diversity and the abundance of several species differed in human amyloid beta knock-in (hAß-KI) females but not males. Correlations to Alzheimer's disease (AD) genotype were stronger for the microbiome than the metabolome. Microbiomes from hAß-KI mice were distinct from 3xTg-AD mice. Cage effects accounted for most of the variance in the microbiome and metabolome.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Genotipo , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/microbiología , Enfermedad de Alzheimer/genética , Femenino , Masculino , Humanos , Péptidos beta-Amiloides/metabolismo , Ratones , Técnicas de Sustitución del Gen , Caracteres Sexuales , Microbiota , Microbioma Gastrointestinal , Metabolómica
5.
Alzheimers Dement ; 20(4): 2794-2816, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38426371

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative disorder with multifactorial etiology, including genetic factors that play a significant role in disease risk and resilience. However, the role of genetic diversity in preclinical AD studies has received limited attention. METHODS: We crossed five Collaborative Cross strains with 5xFAD C57BL/6J female mice to generate F1 mice with and without the 5xFAD transgene. Amyloid plaque pathology, microglial and astrocytic responses, neurofilament light chain levels, and gene expression were assessed at various ages. RESULTS: Genetic diversity significantly impacts AD-related pathology. Hybrid strains showed resistance to amyloid plaque formation and neuronal damage. Transcriptome diversity was maintained across ages and sexes, with observable strain-specific variations in AD-related phenotypes. Comparative gene expression analysis indicated correlations between mouse strains and human AD. DISCUSSION: Increasing genetic diversity promotes resilience to AD-related pathogenesis, relative to an inbred C57BL/6J background, reinforcing the importance of genetic diversity in uncovering resilience in the development of AD. HIGHLIGHTS: Genetic diversity's impact on AD in mice was explored. Diverse F1 mouse strains were used for AD study, via the Collaborative Cross. Strain-specific variations in AD pathology, glia, and transcription were found. Strains resilient to plaque formation and plasma neurofilament light chain (NfL) increases were identified. Correlations with human AD transcriptomics were observed.


Asunto(s)
Enfermedad de Alzheimer , Resiliencia Psicológica , Ratones , Humanos , Femenino , Animales , Enfermedad de Alzheimer/patología , Placa Amiloide/patología , Ratones Endogámicos C57BL , Microglía/metabolismo , Variación Genética/genética , Modelos Animales de Enfermedad , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo
6.
Alzheimers Dement ; 20(7): 4914-4934, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38506634

RESUMEN

BACKGROUND: Variants in ABCA7, a member of the ABC transporter superfamily, have been associated with increased risk for developing late onset Alzheimer's disease (LOAD). METHODS: CRISPR-Cas9 was used to generate an Abca7V1613M variant in mice, modeling the homologous human ABCA7V1599M variant, and extensive characterization was performed. RESULTS: Abca7V1613M microglia show differential gene expression profiles upon lipopolysaccharide challenge and increased phagocytic capacity. Homozygous Abca7V1613M mice display elevated circulating cholesterol and altered brain lipid composition. When crossed with 5xFAD mice, homozygous Abca7V1613M mice display fewer Thioflavin S-positive plaques, decreased amyloid beta (Aß) peptides, and altered amyloid precursor protein processing and trafficking. They also exhibit reduced Aß-associated inflammation, gliosis, and neuronal damage. DISCUSSION: Overall, homozygosity for the Abca7V1613M variant influences phagocytosis, response to inflammation, lipid metabolism, Aß pathology, and neuronal damage in mice. This variant may confer a gain of function and offer a protective effect against Alzheimer's disease-related pathology. HIGHLIGHTS: ABCA7 recognized as a top 10 risk gene for developing Alzheimer's disease. Loss of function mutations result in increased risk for LOAD. V1613M variant reduces amyloid beta plaque burden in 5xFAD mice. V1613M variant modulates APP processing and trafficking in 5xFAD mice. V1613M variant reduces amyloid beta-associated damage in 5xFAD mice.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones Transgénicos , Placa Amiloide , Animales , Ratones , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Placa Amiloide/patología , Placa Amiloide/genética , Placa Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Neuronas/metabolismo , Neuronas/patología , Modelos Animales de Enfermedad , Humanos , Encéfalo/patología , Encéfalo/metabolismo , Microglía/metabolismo , Microglía/patología , Fagocitosis/genética , Precursor de Proteína beta-Amiloide/genética
7.
Alzheimers Dement ; 20(4): 2922-2942, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38460121

RESUMEN

INTRODUCTION: The BIN1 coding variant rs138047593 (K358R) is linked to Late-Onset Alzheimer's Disease (LOAD) via targeted exome sequencing. METHODS: To elucidate the functional consequences of this rare coding variant on brain amyloidosis and neuroinflammation, we generated BIN1K358R knock-in mice using CRISPR/Cas9 technology. These mice were subsequently bred with 5xFAD transgenic mice, which serve as a model for Alzheimer's pathology. RESULTS: The presence of the BIN1K358R variant leads to increased cerebral amyloid deposition, with a dampened response of astrocytes and oligodendrocytes, but not microglia, at both the cellular and transcriptional levels. This correlates with decreased neurofilament light chain in both plasma and brain tissue. Synaptic densities are significantly increased in both wild-type and 5xFAD backgrounds homozygous for the BIN1K358R variant. DISCUSSION: The BIN1 K358R variant modulates amyloid pathology in 5xFAD mice, attenuates the astrocytic and oligodendrocytic responses to amyloid plaques, decreases damage markers, and elevates synaptic densities. HIGHLIGHTS: BIN1 rs138047593 (K358R) coding variant is associated with increased risk of LOAD. BIN1 K358R variant increases amyloid plaque load in 12-month-old 5xFAD mice. BIN1 K358R variant dampens astrocytic and oligodendrocytic response to plaques. BIN1 K358R variant decreases neuronal damage in 5xFAD mice. BIN1 K358R upregulates synaptic densities and modulates synaptic transmission.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Ratones Transgénicos , Neuroglía/patología , Placa Amiloide/patología , Humanos
8.
Neurobiol Dis ; 176: 105939, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462718

RESUMEN

A key challenge in developing diagnosis and treatments for Alzheimer's disease (AD) is to detect abnormal network activity at as early a stage as possible. To date, behavioral and neurophysiological investigations in AD model mice have yet to conduct a longitudinal assessment of cellular pathology, memory deficits, and neurophysiological correlates of neuronal activity. We therefore examined the temporal relationships between pathology, neuronal activities and spatial representation of environments, as well as object location memory deficits across multiple stages of development in the 5xFAD mice model and compared these results to those observed in wild-type mice. We performed longitudinal in vivo calcium imaging with miniscope on hippocampal CA1 neurons in behaving mice. We find that 5xFAD mice show amyloid plaque accumulation, depressed neuronal calcium activity during immobile states, and degenerate and unreliable hippocampal neuron spatial tuning to environmental location at early stages by 4 months of age while their object location memory (OLM) is comparable to WT mice. By 8 months of age, 5xFAD mice show deficits of OLM, which are accompanied by progressive degradation of spatial encoding and, eventually, impaired CA1 neural tuning to object-location pairings. Furthermore, depressed neuronal activity and unreliable spatial encoding at early stage are correlated with impaired performance in OLM at 8-month-old. Our results indicate the close connection between impaired hippocampal tuning to object-location and the presence of OLM deficits. The results also highlight that depressed baseline firing rates in hippocampal neurons during immobile states and unreliable spatial representation precede object memory deficits and predict memory deficits at older age, suggesting potential early opportunities for AD detecting.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Calcio/metabolismo , Ratones Transgénicos , Neuronas/metabolismo , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Hipocampo/metabolismo , Modelos Animales de Enfermedad
9.
J Neuroinflammation ; 20(1): 211, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726739

RESUMEN

The contribution of the gut microbiome to neuroinflammation, cognition, and Alzheimer's disease progression has been highlighted over the past few years. Additionally, inhibition of various components of the complement system has repeatedly been demonstrated to reduce neuroinflammation and improve cognitive performance in AD mouse models. Whether the deletion of these complement components is associated with distinct microbiome composition, which could impact neuroinflammation and cognitive performance in mouse models has not yet been examined. Here, we provide a comprehensive analysis of conditional and constitutive knockouts, pharmacological inhibitors, and various housing paradigms for the animal models and wild-type controls at various ages. We aimed to determine the impact of C1q or C5aR1 inhibition on the microbiome in the Arctic and Tg2576 mouse models of AD, which develop amyloid plaques at different ages and locations. Analysis of fecal samples from WT and Arctic mice following global deletion of C1q demonstrated significant alterations to the microbiomes of Arctic but not WT mice, with substantial differences in abundances of Erysipelotrichales, Clostridiales and Alistipes. While no differences in microbiome diversity were detected between cohoused wildtype and Arctic mice with or without the constitutive deletion of the downstream complement receptor, C5aR1, a difference was detected between the C5aR1 sufficient (WT and Arctic) and deficient (C5ar1KO and ArcticC5aR1KO) mice, when the mice were housed segregated by C5aR1 genotype. However, cohousing of C5aR1 sufficient and deficient wildtype and Arctic mice resulted in a convergence of the microbiomes and equalized abundances of each identified order and genus across all genotypes. Similarly, pharmacologic treatment with the C5aR1 antagonist, PMX205, beginning at the onset of beta-amyloid plaque deposition in the Arctic and Tg2576 mice, demonstrated no impact of C5aR1 inhibition on the microbiome. This study demonstrates the importance of C1q in microbiota homeostasis in neurodegenerative disease. In addition, while demonstrating that constitutive deletion of C5aR1 can significantly alter the composition of the fecal microbiome, these differences are not present when C5aR1-deficient mice are cohoused with C5aR1-sufficient animals with or without the AD phenotype and suggests limited if any contribution of the microbiome to the previously observed prevention of cognitive and neuronal loss in the C5aR1-deficient AD models.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Animales , Ratones , Enfermedad de Alzheimer/genética , Complemento C1q/genética , Modelos Animales de Enfermedad , Enfermedades Neuroinflamatorias , Receptores de Complemento/genética
10.
Glia ; 70(3): 451-465, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34762332

RESUMEN

The classical complement cascade mediates synapse elimination in the visual thalamus during early brain development. However, whether the primary visual cortex also undergoes complement-mediated synapse elimination during early visual system development remains unknown. Here, we examined microglia-mediated synapse elimination in the visual thalamus and the primary visual cortex of early postnatal C1q and SRPX2 knockout mice. In the lateral geniculate nucleus, deletion of C1q caused a persistent decrease in synapse elimination and microglial synapse engulfment, while deletion of SRPX2 caused a transient increase in the same readouts. In the C1q-SRPX2 double knockout mice, the C1q knockout phenotypes were dominant over the SRPX2 knockout phenotypes, a result which is consistent with SRPX2 being an inhibitor of C1q. We found that genetic deletion of either C1q or SRPX2 did not affect synapse elimination or microglial engulfment of synapses in layer 4 of the primary visual cortex in early brain development. Together, these results show that the classical complement pathway regulates microglia-mediated synapse elimination in the visual thalamus but not the visual cortex during early development of the central nervous system.


Asunto(s)
Proteínas de la Membrana/metabolismo , Microglía , Proteínas de Neoplasias/metabolismo , Corteza Visual , Animales , Complemento C1q/genética , Complemento C1q/metabolismo , Ratones , Microglía/metabolismo , Sinapsis/metabolismo , Tálamo/metabolismo , Corteza Visual/metabolismo
11.
J Neuroinflammation ; 19(1): 178, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35820938

RESUMEN

BACKGROUND: The complement system is part of the innate immune system that clears pathogens and cellular debris. In the healthy brain, complement influences neurodevelopment and neurogenesis, synaptic pruning, clearance of neuronal blebs, recruitment of phagocytes, and protects from pathogens. However, excessive downstream complement activation that leads to generation of C5a, and C5a engagement with its receptor C5aR1, instigates a feed-forward loop of inflammation, injury, and neuronal death, making C5aR1 a potential therapeutic target for neuroinflammatory disorders. C5aR1 ablation in the Arctic (Arc) model of Alzheimer's disease protects against cognitive decline and neuronal injury without altering amyloid plaque accumulation. METHODS: To elucidate the effects of C5a-C5aR1 signaling on AD pathology, we crossed Arc mice with a C5a-overexpressing mouse (ArcC5a+) and tested hippocampal memory. RNA-seq was performed on hippocampus and cortex from Arc, ArcC5aR1KO, and ArcC5a+ mice at 2.7-10 months and age-matched controls to assess mechanisms involved in each system. Immunohistochemistry was used to probe for protein markers of microglia and astrocytes activation states. RESULTS: ArcC5a+ mice had accelerated cognitive decline compared to Arc. Deletion of C5ar1 delayed or prevented the expression of some, but not all, AD-associated genes in the hippocampus and a subset of pan-reactive and A1 reactive astrocyte genes, indicating a separation between genes induced by amyloid plaques alone and those influenced by C5a-C5aR1 signaling. Biological processes associated with AD and AD mouse models, including inflammatory signaling, microglial cell activation, and astrocyte migration, were delayed in the ArcC5aR1KO hippocampus. Interestingly, C5a overexpression also delayed the increase of some AD-, complement-, and astrocyte-associated genes, suggesting the possible involvement of neuroprotective C5aR2. However, these pathways were enhanced in older ArcC5a+ mice compared to Arc. Immunohistochemistry confirmed that C5a-C5aR1 modulation in Arc mice delayed the increase in CD11c-positive microglia, while not affecting other pan-reactive microglial or astrocyte markers. CONCLUSION: C5a-C5aR1 signaling in AD largely exerts its effects by enhancing microglial activation pathways that accelerate disease progression. While C5a may have neuroprotective effects via C5aR2, engagement of C5a with C5aR1 is detrimental in AD models. These data support specific pharmacological inhibition of C5aR1 as a potential therapeutic strategy to treat AD.


Asunto(s)
Enfermedad de Alzheimer , Fenómenos Biológicos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Ratones , Microglía/metabolismo , Placa Amiloide/metabolismo , Receptor de Anafilatoxina C5a/genética , Receptor de Anafilatoxina C5a/metabolismo , Transducción de Señal
12.
J Immunol ; 204(2): 306-315, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31907273

RESUMEN

An estimated 5.7 million Americans suffer from Alzheimer's disease in the United States, with no disease-modifying treatments to prevent or treat cognitive deficits associated with the disease. Genome-wide association studies suggest that an enhancement of clearance mechanisms and/or promotion of an anti-inflammatory response may slow or prevent disease progression. Increasing awareness of distinct roles of complement components in normal brain development and function and in neurodegenerative disorders align with complement-mediated responses, and thus, thorough understanding of these molecular pathways is needed to facilitate successful therapeutic design. Both beneficial and detrimental effects of C1q as well as contributions to local inflammation by C5a-C5aR1 signaling in brain highlight the need for precision of therapeutic design. The potential benefit of ß-amyloid clearance from the circulation via CR1-mediated mechanisms is also reviewed. Therapies that suppress inflammation while preserving protective effects of complement could be tested now to slow the progression of this debilitating disease.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Encéfalo/inmunología , Proteínas del Sistema Complemento/fisiología , Animales , Humanos
13.
Alzheimers Dement ; 18(5): 1038-1046, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34874605

RESUMEN

COVID-19 causes lasting neurological symptoms in some survivors. Like other infections, COVID-19 may increase risk of cognitive impairment. This perspective highlights four knowledge gaps about COVID-19 that need to be filled to avoid this possible health issue. The first is the need to identify the COVID-19 symptoms, genetic polymorphisms and treatment decisions associated with risk of cognitive impairment. The second is the absence of model systems in which to test hypotheses relating infection to cognition. The third is the need for consortia for studying both existing and new longitudinal cohorts in which to monitor long term consequences of COVID-19 infection. A final knowledge gap discussed is the impact of the isolation and lack of social services brought about by quarantine/lockdowns on people living with dementia and their caregivers. Research into these areas may lead to interventions that reduce the overall risk of cognitive decline for COVID-19 survivors.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Disfunción Cognitiva , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , Cuidadores/psicología , Control de Enfermedades Transmisibles , Humanos
14.
J Neuroinflammation ; 17(1): 354, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239010

RESUMEN

The complement cascade is a critical effector mechanism of the innate immune system that contributes to the rapid clearance of pathogens and dead or dying cells, as well as contributing to the extent and limit of the inflammatory immune response. In addition, some of the early components of this cascade have been clearly shown to play a beneficial role in synapse elimination during the development of the nervous system, although excessive complement-mediated synaptic pruning in the adult or injured brain may be detrimental in multiple neurogenerative disorders. While many of these later studies have been in mouse models, observations consistent with this notion have been reported in human postmortem examination of brain tissue. Increasing awareness of distinct roles of C1q, the initial recognition component of the classical complement pathway, that are independent of the rest of the complement cascade, as well as the relationship with other signaling pathways of inflammation (in the periphery as well as the central nervous system), highlights the need for a thorough understanding of these molecular entities and pathways to facilitate successful therapeutic design, including target identification, disease stage for treatment, and delivery in specific neurologic disorders. Here, we review the evidence for both beneficial and detrimental effects of complement components and activation products in multiple neurodegenerative disorders. Evidence for requisite co-factors for the diverse consequences are reviewed, as well as the recent studies that support the possibility of successful pharmacological approaches to suppress excessive and detrimental complement-mediated chronic inflammation, while preserving beneficial effects of complement components, to slow the progression of neurodegenerative disease.


Asunto(s)
Activación de Complemento/fisiología , Proteínas del Sistema Complemento/biosíntesis , Proteínas del Sistema Complemento/inmunología , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/metabolismo , Animales , Activación de Complemento/efectos de los fármacos , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
15.
Alzheimers Dement ; 14(2): 243-252, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28755839

RESUMEN

INTRODUCTION: Our previous studies have shown that amyloid ß peptide (Aß) is subject to complement-mediated clearance from the peripheral circulation, and that this mechanism is deficient in Alzheimer's disease. The mechanism should be enhanced by Aß antibodies that form immune complexes (ICs) with Aß, and therefore may be relevant to current Aß immunotherapy approaches. METHODS: Multidisciplinary methods were employed to demonstrate enhanced complement-mediated capture of Aß antibody immune complexes compared with Aß alone in both erythrocytes and THP1-derived macrophages. RESULTS: Aß antibodies dramatically increased complement activation and opsonization of Aß, followed by commensurately enhanced Aß capture by human erythrocytes and macrophages. These in vitro findings were consistent with enhanced peripheral clearance of intravenously administered Aß antibody immune complexes in nonhuman primates. DISCUSSION: Together with our previous results, showing significant Alzheimer's disease deficits in peripheral Aß clearance, the present findings strongly suggest that peripheral mechanisms should not be ignored as contributors to the effects of Aß immunotherapy.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/inmunología , Anticuerpos/sangre , Proteínas del Sistema Complemento/metabolismo , Eritrocitos/metabolismo , Inmunoterapia/métodos , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/administración & dosificación , Péptidos beta-Amiloides/metabolismo , Animales , Adhesión Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Eritrocitos/efectos de los fármacos , Femenino , Humanos , Factores Inmunológicos , Macaca fascicularis , Macrófagos/metabolismo , Masculino , Fagocitosis , Células THP-1/metabolismo , Células THP-1/patología
16.
Alzheimers Dement ; 14(11): 1438-1449, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29792870

RESUMEN

INTRODUCTION: Genome-wide association studies consistently show that single nucleotide polymorphisms (SNPs) in the complement receptor 1 (CR1) gene modestly but significantly alter Alzheimer's disease (AD) risk. Follow-up research has assumed that CR1 is expressed in the human brain despite a paucity of evidence for its function there. Alternatively, erythrocytes contain >80% of the body's CR1, where, in primates, it is known to bind circulating pathogens. METHODS: Multidisciplinary methods were employed. RESULTS: Conventional Western blots and quantitative polymerase chain reaction failed to detect CR1 in the human brain. Brain immunohistochemistry revealed only vascular CR1. By contrast, erythrocyte CR1 immunoreactivity was readily observed and was significantly deficient in AD, as was CR1-mediated erythrocyte capture of circulating amyloid ß peptide. CR1 SNPs associated with decreased erythrocyte CR1 increased AD risk, whereas a CR1 SNP associated with increased erythrocyte CR1 decreased AD risk. DISCUSSION: SNP effects on erythrocyte CR1 likely underlie the association of CR1 polymorphisms with AD risk.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Polimorfismo de Nucleótido Simple , Receptores de Complemento 3b/genética , Receptores de Complemento 3b/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Apolipoproteínas E/genética , Eritrocitos/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Microglía/metabolismo , Neocórtex/metabolismo , Estudios Prospectivos , Isoformas de Proteínas , Receptores de Complemento 3b/química
17.
J Neuroinflammation ; 14(1): 48, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28264694

RESUMEN

BACKGROUND: The complement cascade not only provides protection from infection but can also mediate destructive inflammation. Complement is also involved in elimination of neuronal synapses which is essential for proper development, but can be detrimental during aging and disease. C1q, required for several of these complement-mediated activities, is present in the neuropil, microglia, and a subset of interneurons in the brain. METHODS: To identify the source(s) of C1q in the brain, the C1qa gene was selectively inactivated in the microglia or Thy-1+ neurons in both wild type mice and a mouse model of Alzheimer's disease (AD), and C1q synthesis assessed by immunohistochemistry, QPCR, and western blot analysis. RESULTS: While C1q expression in the brain was unaffected after inactivation of C1qa in Thy-1+ neurons, the brains of C1qa FL/FL :Cx3cr1 CreERT2 mice in which C1qa was ablated in microglia were devoid of C1q with the exception of limited C1q in subsets of interneurons. Surprisingly, this loss of C1q occurred even in the absence of tamoxifen by 1 month of age, demonstrating that Cre activity is tamoxifen-independent in microglia in Cx3cr1 CreERT2/WganJ mice. C1q expression in C1qa FL/FL : Cx3cr1 CreERT2/WganJ mice continued to decline and remained almost completely absent through aging and in AD model mice. No difference in C1q was detected in the liver or kidney from C1qa FL/FL : Cx3cr1 CreERT2/WganJ mice relative to controls, and C1qa FL/FL : Cx3cr1 CreERT2/WganJ mice had minimal, if any, reduction in plasma C1q. CONCLUSIONS: Thus, microglia, but not neurons or peripheral sources, are the dominant source of C1q in the brain. While demonstrating that the Cx3cr1 CreERT2/WganJ deleter cannot be used for adult-induced deletion of genes in microglia, the model described here enables further investigation of physiological roles of C1q in the brain and identification of therapeutic targets for the selective control of complement-mediated activities contributing to neurodegenerative disorders.


Asunto(s)
Encéfalo/citología , Complemento C1q/deficiencia , Microglía/metabolismo , Animales , Animales Recién Nacidos , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocinas CX3C , Complemento C1q/genética , Regulación de la Expresión Génica/fisiología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Neurópilo/metabolismo , ARN Mensajero/metabolismo , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
18.
Alzheimers Dement ; 13(12): 1397-1409, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28475854

RESUMEN

INTRODUCTION: Although amyloid ß peptide (Aß) is cleared from the brain to cerebrospinal fluid and the peripheral circulation, mechanisms for its removal from blood remain unresolved. Primates have uniquely evolved a highly effective peripheral clearance mechanism for pathogens, immune adherence, in which erythrocyte complement receptor 1 (CR1) plays a major role. METHODS: Multidisciplinary methods were used to demonstrate immune adherence capture of Aß by erythrocytes and its deficiency in Alzheimer's disease (AD). RESULTS: Aß was shown to be subject to immune adherence at every step in the pathway. Aß dose-dependently activated serum complement. Complement-opsonized Aß was captured by erythrocytes via CR1. Erythrocytes, Aß, and hepatic Kupffer cells were colocalized in the human liver. Significant deficits in erythrocyte Aß levels were found in AD and mild cognitive impairment patients. DISCUSSION: CR1 polymorphisms elevate AD risk, and >80% of human CR1 is vested in erythrocytes to subserve immune adherence. The present results suggest that this pathway is pathophysiologically relevant in AD.


Asunto(s)
Enfermedad de Alzheimer/sangre , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/sangre , Eritrocitos/metabolismo , Fragmentos de Péptidos/metabolismo , Receptores de Complemento/fisiología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/farmacología , Animales , Estudios de Casos y Controles , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Relación Dosis-Respuesta a Droga , Eritrocitos/efectos de los fármacos , Femenino , Humanos , Hígado/metabolismo , Hígado/patología , Hígado/ultraestructura , Macaca fascicularis/sangre , Masculino , Pruebas de Estado Mental y Demencia , Microscopía Electrónica , Persona de Mediana Edad , Fragmentos de Péptidos/farmacología , Unión Proteica/efectos de los fármacos , Receptores de Complemento/genética
19.
J Neurosci ; 35(27): 9977-89, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26156998

RESUMEN

With severe injury or disease, microglia become chronically activated and damage the local brain environment, likely contributing to cognitive decline. We previously discovered that microglia are dependent on colony-stimulating factor 1 receptor (CSF1R) signaling for survival in the healthy adult brain, and we have exploited this dependence to determine whether such activated microglia contribute deleteriously to functional recovery following a neuronal lesion. Here, we induced a hippocampal lesion in mice for 25 d via neuronal expression of diphtheria toxin A-chain, producing both a neuroinflammatory reaction and behavioral alterations. Following the 25 d lesion, we administered PLX3397, a CSF1R inhibitor, for 30 d to eliminate microglia. This post-lesion treatment paradigm improved functional recovery on elevated plus maze and Morris water maze, concomitant with reductions in elevated proinflammatory molecules, as well as normalization of lesion-induced alterations in synaptophysin and PSD-95. Further exploration of the effects of microglia on synapses in a second cohort of mice revealed that dendritic spine densities are increased with long-term microglial elimination, providing evidence that microglia shape the synaptic landscape in the adult mouse brain. Furthermore, in these same animals, we determined that microglia play a protective role during lesioning, whereby neuronal loss was potentiated in the absence of these cells. Collectively, we demonstrate that microglia exert beneficial effects during a diphtheria toxin-induced neuronal lesion, but impede recovery following insult. SIGNIFICANCE STATEMENT: It remains unknown to what degree, and by what mechanisms, chronically activated microglia contribute to cognitive deficits associated with brain insults. We induced a genetic neuronal lesion in mice for 25 d and found activated microglia to increase inflammation, alter synaptic surrogates, and impede behavioral recovery. These lesion-associated deficits were ameliorated with subsequent microglial elimination, underscoring the importance of developing therapeutics aimed at eliminating/modulating chronic microglial activation. Additionally, we found long-term microglial depletion globally increases dendritic spines by ∼35% in the adult brain, indicating that microglia continue to sculpt the synaptic landscape in the postdevelopmental brain under homeostatic conditions. Microglial manipulation can therefore be used to investigate the utility of increasing dendritic spine numbers in postnatal conditions displaying synaptic aberrations.


Asunto(s)
Hipocampo/patología , Microglía/fisiología , Neuronas/patología , Recuperación de la Función/fisiología , Aminopiridinas/farmacología , Animales , Síntomas Conductuales/etiología , Barrera Hematoencefálica/fisiopatología , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/patología , Trastornos del Conocimiento/etiología , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Doxiciclina/farmacología , Femenino , Hipocampo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Fosfopiruvato Hidratasa/metabolismo , Pirroles/farmacología , Recuperación de la Función/efectos de los fármacos , Sinaptofisina/metabolismo
20.
Glia ; 64(1): 35-47, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26257016

RESUMEN

The complement system has been implicated in the removal of dysfunctional synapses and neurites during development and in disease processes in the mouse, but it is unclear how far the mouse data can be transferred to humans. Here, we co-cultured macrophages derived from human THP1 monocytes and neurons derived from human induced pluripotent stem cells, to study the role of the complement system in a human model. Components of the complement system were expressed by the human macrophages and human neuronal culture, while receptors of the complement cascade were expressed by human macrophages as shown via gene transcript analysis and flow cytometry. We mimicked pathological conditions leading to an altered glycocalyx by treatment of human neurons with sialidases. Desialylated human neurites were opsonized by the complement component C1q. Furthermore, human neurites with an intact sialic acid cap remained untouched, while desialylated human neurites were removed and ingested by human macrophages. While blockage of the complement receptor 1 (CD35) had no effect, blockage of CD11b as part of the complement receptor 3 (CR3) reversed the effect on macrophage phagocytosis of desialylated human neurites. Data demonstrate that in the human system sialylation of the neuronal glycocalyx serves as an inhibitory flag for complement binding and CR3-mediated phagocytosis by macrophages.


Asunto(s)
Macrófagos/fisiología , Mucolipidosis/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neuritas/fisiología , Neuronas/fisiología , Fagocitosis/fisiología , Antígeno CD11b/metabolismo , Técnicas de Cocultivo , Complemento C1q/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Antígeno de Macrófago-1/metabolismo , Monocitos/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Receptores de Complemento 3b/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA