Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(10): e1010952, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37782669

RESUMEN

Heterozygous de novo loss-of-function mutations in the gene expression regulator HNRNPU cause an early-onset developmental and epileptic encephalopathy. To gain insight into pathological mechanisms and lay the potential groundwork for developing targeted therapies, we characterized the neurophysiologic and cell-type-specific transcriptomic consequences of a mouse model of HNRNPU haploinsufficiency. Heterozygous mutants demonstrated global developmental delay, impaired ultrasonic vocalizations, cognitive dysfunction and increased seizure susceptibility, thus modeling aspects of the human disease. Single-cell RNA-sequencing of hippocampal and neocortical cells revealed widespread, yet modest, dysregulation of gene expression across mutant neuronal subtypes. We observed an increased burden of differentially-expressed genes in mutant excitatory neurons of the subiculum-a region of the hippocampus implicated in temporal lobe epilepsy. Evaluation of transcriptomic signature reversal as a therapeutic strategy highlights the potential importance of generating cell-type-specific signatures. Overall, this work provides insight into HNRNPU-mediated disease mechanisms and provides a framework for using single-cell RNA-sequencing to study transcriptional regulators implicated in disease.


Asunto(s)
Haploinsuficiencia , Transcriptoma , Animales , Humanos , Ratones , Haploinsuficiencia/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Neuronas/metabolismo , ARN/metabolismo , Convulsiones/genética , Transcriptoma/genética
2.
Brain ; 143(7): 2039-2057, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32577763

RESUMEN

NMDA receptors play crucial roles in excitatory synaptic transmission. Rare variants in GRIN2A encoding the GluN2A subunit are associated with a spectrum of disorders, ranging from mild speech and language delay to intractable neurodevelopmental disorders, including but not limited to developmental and epileptic encephalopathy. A de novo missense variant, p.Ser644Gly, was identified in a child with this disorder, and Grin2a knock-in mice were generated to model and extend understanding of this intractable childhood disease. Homozygous and heterozygous mutant mice exhibited altered hippocampal morphology at 2 weeks of age, and all homozygotes exhibited lethal tonic-clonic seizures by mid-third week. Heterozygous adults displayed susceptibility to induced generalized seizures, hyperactivity, repetitive and reduced anxiety behaviours, plus several unexpected features, including significant resistance to electrically-induced limbic seizures and to pentylenetetrazole induced tonic-clonic seizures. Multielectrode recordings of neuronal networks revealed hyperexcitability and altered bursting and synchronicity. In heterologous cells, mutant receptors had enhanced NMDA receptor agonist potency and slow deactivation following rapid removal of glutamate, as occurs at synapses. NMDA receptor-mediated synaptic currents in heterozygous hippocampal slices also showed a prolonged deactivation time course. Standard anti-epileptic drug monotherapy was ineffective in the patient. Introduction of NMDA receptor antagonists was correlated with a decrease in seizure burden. Chronic treatment of homozygous mouse pups with NMDA receptor antagonists significantly delayed the onset of lethal seizures but did not prevent them. These studies illustrate the power of using multiple experimental modalities to model and test therapies for severe neurodevelopmental disorders, while revealing significant biological complexities associated with GRIN2A developmental and epileptic encephalopathy.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsia Generalizada/tratamiento farmacológico , Epilepsia Generalizada/genética , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Receptores de N-Metil-D-Aspartato/genética , Animales , Dextrometorfano/uso terapéutico , Epilepsia Generalizada/patología , Técnicas de Sustitución del Gen , Humanos , Lactante , Masculino , Memantina/uso terapéutico , Ratones , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología
3.
Neurobiol Dis ; 134: 104632, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31678406

RESUMEN

ARFGEF1 encodes a guanine exchange factor involved in intracellular vesicle trafficking, and is a candidate gene for childhood genetic epilepsies. To model ARFGEF1 haploinsufficiency observed in a recent Lennox Gastaut Syndrome patient, we studied a frameshift mutation (Arfgef1fs) in mice. Arfgef1fs/+ pups exhibit signs of developmental delay, and Arfgef1fs/+ adults have a significantly decreased threshold to induced seizures but do not experience spontaneous seizures. Histologically, the Arfgef1fs/+ brain exhibits a disruption in the apical lining of the dentate gyrus and altered spine morphology of deep layer neurons. In primary hippocampal neuron culture, dendritic surface and synaptic but not total GABAA receptors (GABAAR) are reduced in Arfgef1fs/+ neurons with an accompanying decrease in the number of GABAAR-containing recycling endosomes in cell body. Arfgef1fs/+ neurons also display differences in the relative ratio of Arf6+:Rab11+:TrfR+ recycling endosomes. Although the GABAAR-containing early endosomes in Arfgef1fs/+ neurons are comparable to wildtype, Arfgef1fs/+ neurons show an increase in the number of GABAAR-containing lysosomes in dendrite and cell body. Together, the altered endosome composition and decreased neuronal surface GABAAR results suggests a mechanism whereby impaired neuronal inhibition leads to seizure susceptibility.


Asunto(s)
Endosomas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Neuronas/metabolismo , Receptores de GABA-A/metabolismo , Convulsiones/metabolismo , Animales , Encéfalo/metabolismo , Preescolar , Factores de Intercambio de Guanina Nucleótido/genética , Haploinsuficiencia , Humanos , Lactante , Síndrome de Lennox-Gastaut/genética , Masculino , Proteínas de la Membrana , Ratones , Ratones Noqueados
4.
PLoS One ; 12(4): e0175888, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28414797

RESUMEN

BIG1, an activator protein of the small GTPase, Arf, and encoded by the Arfgef1 gene, is one of candidate genes for epileptic encephalopathy. To know the involvement of BIG1 in epileptic encephalopathy, we analyzed BIG1-deficient mice and found that BIG1 regulates neurite outgrowth and brain development in vitro and in vivo. The loss of BIG1 decreased the size of the neocortex and hippocampus. In BIG1-deficient mice, the neuronal progenitor cells (NPCs) and the interneurons were unaffected. However, Tbr1+ and Ctip2+ deep layer (DL) neurons showed spatial-temporal dependent apoptosis. This apoptosis gradually progressed from the piriform cortex (PIR), peaked in the neocortex, and then progressed into the hippocampus from embryonic day 13.5 (E13.5) to E17.5. The upper layer (UL) and DL order in the neocortex was maintained in BIG1-deficient mice, but the excitatory neurons tended to accumulate before their destination layers. Further pulse-chase migration assay showed that the migration defect was non-cell autonomous and secondary to the progression of apoptosis into the BIG1-deficient neocortex after E15.5. In BIG1-deficient mice, we observed an ectopic projection of corticothalamic axons from the primary somatosensory cortex (S1) into the dorsal lateral geniculate nucleus (dLGN). The thalamocortical axons were unable to cross the diencephalon-telencephalon boundary (DTB). In vitro, BIG1-deficient neurons showed a delay in neuronal polarization. BIG1-deficient neurons were also hypersensitive to low dose glutamate (5 µM), and died via apoptosis. This study showed the role of BIG1 in the survival of DL neurons in developing embryonic brain and in the generation of neuronal polarity.


Asunto(s)
Axones/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Interneuronas/metabolismo , Neocórtex/metabolismo , Tálamo/metabolismo , Animales , Apoptosis/fisiología , Hipocampo/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA