Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(12): 3192-3204.e16, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33974910

RESUMEN

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by binding of the viral Spike protein to host receptor angiotensin-converting enzyme 2 (ACE2), followed by fusion of viral and host membranes. Although antibodies that block this interaction are in emergency use as early coronavirus disease 2019 (COVID-19) therapies, the precise determinants of neutralization potency remain unknown. We discovered a series of antibodies that potently block ACE2 binding but exhibit divergent neutralization efficacy against the live virus. Strikingly, these neutralizing antibodies can inhibit or enhance Spike-mediated membrane fusion and formation of syncytia, which are associated with chronic tissue damage in individuals with COVID-19. As revealed by cryoelectron microscopy, multiple structures of Spike-antibody complexes have distinct binding modes that not only block ACE2 binding but also alter the Spike protein conformational cycle triggered by ACE2 binding. We show that stabilization of different Spike conformations leads to modulation of Spike-mediated membrane fusion with profound implications for COVID-19 pathology and immunity.


Asunto(s)
Anticuerpos Neutralizantes/química , Células Gigantes/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Complejo Antígeno-Anticuerpo/química , Complejo Antígeno-Anticuerpo/metabolismo , Sitios de Unión , Células CHO , COVID-19/patología , COVID-19/virología , Cricetinae , Cricetulus , Microscopía por Crioelectrón , Células Gigantes/citología , Humanos , Fusión de Membrana , Biblioteca de Péptidos , Unión Proteica , Dominios Proteicos , Estructura Cuaternaria de Proteína , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
Nature ; 585(7826): 584-587, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32698191

RESUMEN

Coronavirus disease 2019 (COVID-19) has rapidly become a global pandemic and no antiviral drug or vaccine is yet available for the treatment of this disease1-3. Several clinical studies are ongoing to evaluate the efficacy of repurposed drugs that have demonstrated antiviral efficacy in vitro. Among these candidates, hydroxychloroquine (HCQ) has been given to thousands of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the virus that causes COVID-19-worldwide but there is no definitive evidence that HCQ is effective for treating COVID-194-7. Here we evaluated the antiviral activity of HCQ both in vitro and in SARS-CoV-2-infected macaques. HCQ showed antiviral activity in African green monkey kidney cells (Vero E6) but not in a model of reconstituted human airway epithelium. In macaques, we tested different treatment strategies in comparison to a placebo treatment, before and after peak viral load, alone or in combination with azithromycin (AZTH). Neither HCQ nor the combination of HCQ and AZTH showed a significant effect on viral load in any of the analysed tissues. When the drug was used as a pre-exposure prophylaxis treatment, HCQ did not confer protection against infection with SARS-CoV-2. Our findings do not support the use of HCQ, either alone or in combination with AZTH, as an antiviral drug for the treatment of COVID-19 in humans.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Hidroxicloroquina/uso terapéutico , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Animales , Azitromicina/farmacología , Azitromicina/uso terapéutico , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/fisiopatología , Citocinas/sangre , Modelos Animales de Enfermedad , Femenino , Humanos , Hidroxicloroquina/farmacocinética , Hidroxicloroquina/farmacología , Técnicas In Vitro , Cinética , Macaca fascicularis , Masculino , Pandemias , Neumonía Viral/patología , Neumonía Viral/fisiopatología , Profilaxis Pre-Exposición , Mucosa Respiratoria/citología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/virología , SARS-CoV-2 , Factores de Tiempo , Insuficiencia del Tratamiento , Células Vero , Carga Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
3.
J Virol ; 97(2): e0142322, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36692289

RESUMEN

Concurrent infections with multiple pathogens are often described in cattle with respiratory illness. However, how the host-pathogen interactions influence the clinical outcome has been only partially explored in this species. Influenza D virus (IDV) was discovered in 2011. Since then, IDV has been detected worldwide in different hosts. A significant association between IDV and bacterial pathogens in sick cattle was shown in epidemiological studies, especially with Mycoplasma bovis. In an experimental challenge, IDV aggravated M. bovis-induced pneumonia. However, the mechanisms through which IDV drives an increased susceptibility to bacterial superinfections remain unknown. Here, we used the organotypic lung model precision-cut lung slices to study the interplay between IDV and M. bovis coinfection. Our results show that a primary IDV infection promotes M. bovis superinfection by increasing the bacterial replication and the ultrastructural damages in lung pneumocytes. In our model, IDV impaired the innate immune response triggered by M. bovis by decreasing the expression of several proinflammatory cytokines and chemokines that are important for immune cell recruitment and the bacterial clearance. Stimulations with agonists of cytosolic helicases and Toll-like receptors (TLRs) revealed that a primary activation of RIG-I/MDA5 desensitizes the TLR2 activation, similar to what was observed with IDV infection. The cross talk between these two pattern recognition receptors leads to a nonadditive response, which alters the TLR2-mediated cascade that controls the bacterial infection. These results highlight innate immune mechanisms that were not described for cattle so far and improve our understanding of the bovine host-microbe interactions and IDV pathogenesis. IMPORTANCE Since the spread of the respiratory influenza D virus (IDV) infection to the cattle population, the question about the impact of this virus on bovine respiratory disease (BRD) remains still unanswered. Animals affected by BRD are often coinfected with multiple pathogens, especially viruses and bacteria. In particular, viruses are suspected to enhance secondary bacterial superinfections. Here, we use an ex vivo model of lung tissue to study the effects of IDV infection on bacterial superinfections. Our results show that IDV increases the susceptibility to the respiratory pathogen Mycoplasma bovis. In particular, IDV seems to activate immune pathways that inhibit the innate immune response against the bacteria. This may allow M. bovis to increase its proliferation and to delay its clearance from lung tissue. These results suggest that IDV could have a negative impact on the respiratory pathology of cattle.


Asunto(s)
Enfermedades de los Bovinos , Interacciones Microbiota-Huesped , Infecciones por Mycoplasma , Infecciones por Orthomyxoviridae , Transducción de Señal , Thogotovirus , Animales , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/virología , Pulmón/inmunología , Pulmón/microbiología , Pulmón/virología , Mycoplasma bovis/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Transducción de Señal/inmunología , Sobreinfección/inmunología , Sobreinfección/veterinaria , Receptor Toll-Like 2 , Interacciones Microbiota-Huesped/inmunología , Infecciones por Mycoplasma/inmunología , Infecciones por Mycoplasma/virología
4.
PLoS Pathog ; 17(12): e1010106, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34969061

RESUMEN

The development of safe and effective vaccines in a record time after the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a remarkable achievement, partly based on the experience gained from multiple viral outbreaks in the past decades. However, the Coronavirus Disease 2019 (COVID-19) crisis also revealed weaknesses in the global pandemic response and large gaps that remain in our knowledge of the biology of coronaviruses (CoVs) and influenza viruses, the 2 major respiratory viruses with pandemic potential. Here, we review current knowns and unknowns of influenza viruses and CoVs, and we highlight common research challenges they pose in 3 areas: the mechanisms of viral emergence and adaptation to humans, the physiological and molecular determinants of disease severity, and the development of control strategies. We outline multidisciplinary approaches and technological innovations that need to be harnessed in order to improve preparedeness to the next pandemic.


Asunto(s)
COVID-19/virología , Gripe Humana/virología , Orthomyxoviridae/fisiología , SARS-CoV-2/fisiología , Animales , Antivirales , COVID-19/terapia , COVID-19/transmisión , Desarrollo de Medicamentos , Evolución Molecular , Humanos , Gripe Humana/terapia , Gripe Humana/transmisión , Orthomyxoviridae/inmunología , SARS-CoV-2/inmunología , Selección Genética , Carga Viral , Vacunas Virales
5.
J Infect Dis ; 226(12): 2095-2104, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36031537

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with extensive nonpharmacological interventions, have profoundly altered the epidemiology of major respiratory viruses. Some studies have described virus-virus interactions, particularly manifested by viral interference mechanisms at different scales. However, our knowledge of the interactions between SARS-CoV-2 and other respiratory viruses remains incomplete. Here, we studied the interactions between SARS-CoV-2 and several respiratory viruses (influenza, respiratory syncytial virus, human metapneumovirus, and human rhinovirus) in a reconstituted human epithelial airway model, exploring different scenarios affecting the sequence and timing of coinfections. We show that the virus type and sequence of infections are key factors in virus-virus interactions, the primary infection having a determinant role in the immune response to the secondary infection.


Asunto(s)
COVID-19 , Coinfección , Metapneumovirus , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Humanos , SARS-CoV-2 , Mucosa Nasal
6.
PLoS Comput Biol ; 17(3): e1008785, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33730053

RESUMEN

Non-human primates infected with SARS-CoV-2 exhibit mild clinical signs. Here we used a mathematical model to characterize in detail the viral dynamics in 31 cynomolgus macaques for which nasopharyngeal and tracheal viral load were frequently assessed. We identified that infected cells had a large burst size (>104 virus) and a within-host reproductive basic number of approximately 6 and 4 in nasopharyngeal and tracheal compartment, respectively. After peak viral load, infected cells were rapidly lost with a half-life of 9 hours, with no significant association between cytokine elevation and clearance, leading to a median time to viral clearance of 10 days, consistent with observations in mild human infections. Given these parameter estimates, we predict that a prophylactic treatment blocking 90% of viral production or viral infection could prevent viral growth. In conclusion, our results provide estimates of SARS-CoV-2 viral kinetic parameters in an experimental model of mild infection and they provide means to assess the efficacy of future antiviral treatments.


Asunto(s)
COVID-19/virología , Macaca fascicularis/virología , SARS-CoV-2/fisiología , Animales , Antivirales/farmacología , Número Básico de Reproducción , COVID-19/sangre , COVID-19/prevención & control , Citocinas/sangre , Modelos Animales de Enfermedad , Nasofaringe/virología , SARS-CoV-2/efectos de los fármacos , Tráquea/virología , Carga Viral , Replicación Viral/efectos de los fármacos
7.
Cell Mol Life Sci ; 78(7): 3565-3576, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33449149

RESUMEN

Many studies on SARS-CoV-2 have been performed over short-time scale, but few have focused on the ultrastructural characteristics of infected cells. We used TEM to perform kinetic analysis of the ultrastructure of SARS-CoV-2-infected cells. Early infection events were characterized by the presence of clusters of single-membrane vesicles and stacks of membrane containing nuclear pores called annulate lamellae (AL). A large network of host cell-derived organelles transformed into virus factories was subsequently observed in the cells. As previously described for other RNA viruses, these replication factories consisted of double-membrane vesicles (DMVs) located close to the nucleus. Viruses released at the cell surface by exocytosis harbored the typical crown of spike proteins, but viral particles without spikes were also observed in intracellular compartments, possibly reflecting incorrect assembly or a cell degradation process.


Asunto(s)
SARS-CoV-2/crecimiento & desarrollo , Compartimentos de Replicación Viral/ultraestructura , Liberación del Virus/fisiología , Replicación Viral/fisiología , Animales , COVID-19/patología , Línea Celular , Chlorocebus aethiops , Microscopía Electrónica de Transmisión , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Compartimentos de Replicación Viral/fisiología
8.
J Infect Dis ; 223(6): 1052-1061, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-32726438

RESUMEN

Human respiratory syncytial virus (HRSV) constitutes one the main causes of respiratory infection in neonates and infants worldwide. Transcriptome analysis of clinical samples using high-throughput technologies remains an important tool to better understand virus-host complex interactions in the real-life setting but also to identify new diagnosis/prognosis markers or therapeutics targets. A major challenge when exploiting clinical samples such as nasal swabs, washes, or bronchoalveolar lavages is the poor quantity and integrity of nucleic acids. In this study, we applied a tailored transcriptomics workflow to exploit nasal wash samples from children who tested positive for HRSV. Our analysis revealed a characteristic immune signature as a direct reflection of HRSV pathogenesis and highlighted putative biomarkers of interest such as IP-10, TMEM190, MCEMP1, and TIMM23.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Infecciones del Sistema Respiratorio , Niño , Perfilación de la Expresión Génica , Humanos , Lactante , Recién Nacido , Nasofaringe , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/inmunología
9.
Adv Exp Med Biol ; 1322: 195-218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34258742

RESUMEN

Infections by influenza virus constitute a major and recurrent threat for human health. Together with vaccines, antiviral drugs play a key role in the prevention and treatment of influenza virus infection and disease. Today, the number of antiviral molecules approved for the treatment of influenza is relatively limited, and their use is threatened by the emergence of viral strains with resistance mutations. There is therefore a real need to expand the prophylactic and therapeutic arsenal. This chapter summarizes the state of the art in drug discovery and development for the treatment of influenza virus infections, with a focus on both virus-targeting and host cell-targeting strategies. Novel antiviral strategies targeting other viral proteins or targeting the host cell, some of which are based on drug repurposing, may be used in combination to strengthen our therapeutic arsenal against this major pathogen.


Asunto(s)
Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Antivirales/farmacología , Antivirales/uso terapéutico , Descubrimiento de Drogas , Humanos , Gripe Humana/tratamiento farmacológico , Replicación Viral
10.
Molecules ; 26(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946802

RESUMEN

There is an urgent need for specific antiviral treatments directed against SARS-CoV-2 to prevent the most severe forms of COVID-19. By drug repurposing, affordable therapeutics could be supplied worldwide in the present pandemic context. Targeting the nucleoprotein N of the SARS-CoV-2 coronavirus could be a strategy to impede viral replication and possibly other essential functions associated with viral N. The antiviral properties of naproxen, a non-steroidal anti-inflammatory drug (NSAID) that was previously demonstrated to be active against Influenza A virus, were evaluated against SARS-CoV-2. Intrinsic fluorescence spectroscopy, fluorescence anisotropy, and dynamic light scattering assays demonstrated naproxen binding to the nucleoprotein of SARS-Cov-2 as predicted by molecular modeling. Naproxen impeded recombinant N oligomerization and inhibited viral replication in infected cells. In VeroE6 cells and reconstituted human primary respiratory epithelium models of SARS-CoV-2 infection, naproxen specifically inhibited viral replication and protected the bronchial epithelia against SARS-CoV-2-induced damage. No inhibition of viral replication was observed with paracetamol or the COX-2 inhibitor celecoxib. Thus, among the NSAID tested, only naproxen combined antiviral and anti-inflammatory properties. Naproxen addition to the standard of care could be beneficial in a clinical setting, as tested in an ongoing clinical study.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Naproxeno/farmacología , Nucleoproteínas/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Proteínas Virales/antagonistas & inhibidores , Animales , Línea Celular , Chlorocebus aethiops , Reposicionamiento de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Nucleoproteínas/metabolismo , SARS-CoV-2/fisiología , Células Vero , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
11.
J Virol ; 93(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651364

RESUMEN

Influenza A viruses (IAV) are known to modulate and "hijack" several cellular host mechanisms, including gene splicing and RNA maturation machineries. These modulations alter host cellular responses and enable an optimal expression of viral products throughout infection. The interplay between the host protein p53 and IAV, in particular through the viral nonstructural protein NS1, has been shown to be supportive for IAV replication. However, it remains unknown whether alternatively spliced isoforms of p53, known to modulate p53 transcriptional activity, are affected by IAV infection and contribute to IAV replication. Using a TP53 minigene, which mimics intron 9 alternative splicing, we have shown here that the NS1 protein of IAV changes the expression pattern of p53 isoforms. Our results demonstrate that CPSF4 (cellular protein cleavage and polyadenylation specificity factor 4) independently and the interaction between NS1 and CPSF4 modulate the alternative splicing of TP53 transcripts, which may result in the differential activation of p53-responsive genes. Finally, we report that CPSF4 and most likely beta and gamma spliced p53 isoforms affect both viral replication and IAV-associated type I interferon secretion. All together, our data show that cellular p53 and CPSF4 factors, both interacting with viral NS1, have a crucial role during IAV replication that allows IAV to interact with and alter the expression of alternatively spliced p53 isoforms in order to regulate the cellular innate response, especially via type I interferon secretion, and perform efficient viral replication.IMPORTANCE Influenza A viruses (IAV) constitute a major public health issue, causing illness and death in high-risk populations during seasonal epidemics or pandemics. IAV are known to modulate cellular pathways to promote their replication and avoid immune restriction via the targeting of several cellular proteins. One of these proteins, p53, is a master regulator involved in a large panel of biological processes, including cell cycle arrest, apoptosis, or senescence. This "cellular gatekeeper" is also involved in the control of viral infections, and viruses have developed a wide diversity of mechanisms to modulate/hijack p53 functions to achieve an optimal replication in their hosts. Our group and others have previously shown that p53 activity is finely modulated by different multilevel mechanisms during IAV infection. Here, we characterized IAV nonstructural protein NS1 and the cellular factor CPSF4 as major partners involved in the IAV-induced modulation of the TP53 alternative splicing that was associated with a strong modulation of p53 activity and notably the p53-mediated antiviral response.


Asunto(s)
Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Proteína p53 Supresora de Tumor/inmunología , Proteínas no Estructurales Virales/inmunología , Factores de Escisión y Poliadenilación de ARNm/inmunología , Células A549 , Empalme Alternativo/inmunología , Línea Celular Tumoral , Humanos , Inmunidad Innata/inmunología , Gripe Humana/virología , Interferones/inmunología , Replicación Viral/inmunología
12.
J Gen Virol ; 99(4): 489-500, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29504924

RESUMEN

The interplay between respiratory syncytial virus (RSV) and the p53 pathway has only been reported in a limited number of studies, yet the underlying abrogation mechanisms of p53 activity during the time course of infection, possibly involving viral proteins, remained unclear. Here, we demonstrate that RSV infection impairs global p53 transcriptional activity, notably via its proteasome-dependent degradation at late stages of infection. We also demonstrate that NS1 and NS2 contribute to the abrogation of p53 activity, and used different experimental strategies (e.g. siRNA, small molecules) to underline the antiviral contribution of p53 in the context of RSV infection. Notably, our study highlights a strong RSV-induced disequilibrium of the p53/NF-κB functional balance, which appears to contribute to the up-regulation of the expression of several proinflammatory cytokines and chemokines.


Asunto(s)
Citocinas/inmunología , FN-kappa B/metabolismo , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Citocinas/genética , Humanos , FN-kappa B/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
13.
J Gen Virol ; 98(6): 1174-1180, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28613142

RESUMEN

Human metapneumovirus (HMPV) is an important cause of respiratory tract infections. The mechanism by which its fusion (F) protein is responsible for variable cytopathic effects in vitro remains unknown. We aligned the F sequences of the poorly fusogenic B2/CAN98-75 strain and the hyperfusogenic A1/C-85473 strain and identified divergent residues located in the two functional heptad repeats domains (HRA and HRB). We generated recombinant viruses by inserting the mutations N135T-G139N-T143K-K166E-E167D in HRA and/or K479R-N482S in HRB, corresponding to swapped sequences from C-85473, into CAN98-75 background and investigated their impact on in vitro phenotype and fusogenicity. We demonstrated that the five HRA mutations enhanced the fusogenicity of the recombinant rCAN98-75 virus, almost restoring the phenotype of the wild-type rC-85473 strain, whereas HRB substitutions alone had no significant effect on cell-cell fusion. Altogether, our results support the importance of the HRA domain for an HMPV-triggered fusion mechanism and identify key residues that modulate syncytium formation.


Asunto(s)
Fusión Celular , Células Gigantes/virología , Metapneumovirus/crecimiento & desarrollo , Proteínas Mutantes/metabolismo , Mutación , Proteínas Virales de Fusión/metabolismo , Animales , Línea Celular , Análisis Mutacional de ADN , Células Epiteliales/fisiología , Células Epiteliales/virología , Macaca mulatta , Metapneumovirus/genética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Conformación Proteica , Dominios Proteicos , Recombinación Genética , Genética Inversa , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/genética
14.
Int J Mol Sci ; 18(12)2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29215596

RESUMEN

Respiratory syncytial virus (RSV), a major etiologic agent of acute lower respiratory infection constitutes the most important cause of death in young children worldwide. Viral/bacterial mixed infections are related to severity of respiratory inflammatory diseases, but the underlying mechanisms remain poorly understood. We have previously investigated the intracellular mechanisms that mediate the immune response in the context of influenza virus/Streptococcus pneumoniae (Sp) co-infection using a model of human monocyte-derived macrophages (MDMs). Here, we set up and characterized a similar model of MDMs to investigate different scenarios of RSV infection and co-infection with Sp. Our results suggest that Sp contributes to a faster and possibly higher level of CXCL10/IP-10 expression induced by RSV infection in human MDMs.


Asunto(s)
Quimiocina CXCL10/metabolismo , Coinfección/inmunología , Macrófagos/inmunología , Infecciones Neumocócicas/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Línea Celular Tumoral , Células Cultivadas , Quimiocina CXCL10/genética , Humanos , Macrófagos/microbiología , Macrófagos/virología
15.
Proc Natl Acad Sci U S A ; 110(40): E3840-8, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043788

RESUMEN

The fragmented nature of the influenza A genome allows the exchange of gene segments when two or more influenza viruses infect the same cell, but little is known about the rules underlying this process. Here, we studied genetic reassortment between the A/Moscow/10/99 (H3N2, MO) virus originally isolated from human and the avian A/Finch/England/2051/91 (H5N2, EN) virus and found that this process is strongly biased. Importantly, the avian HA segment never entered the MO genetic background alone but always was accompanied by the avian PA and M fragments. Introduction of the 5' and 3' packaging sequences of HA(MO) into an otherwise HA(EN) backbone allowed efficient incorporation of the chimerical viral RNA (vRNA) into the MO genetic background. Furthermore, forcing the incorporation of the avian M segment or introducing five silent mutations into the human M segment was sufficient to drive coincorporation of the avian HA segment into the MO genetic background. These silent mutations also strongly affected the genotype of reassortant viruses. Taken together, our results indicate that packaging signals are crucial for genetic reassortment and that suboptimal compatibility between the vRNA packaging signals, which are detected only when vRNAs compete for packaging, limit this process.


Asunto(s)
Aves/virología , Coinfección/virología , Transferencia de Gen Horizontal/genética , Hemaglutininas Virales/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/genética , Ensamble de Virus/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cartilla de ADN/genética , Perros , Genotipo , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Datos de Secuencia Molecular , Mutación/genética , Análisis de Secuencia de ADN , Transducción de Señal/genética , Especificidad de la Especie
16.
FASEB J ; 27(10): 4169-83, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23804239

RESUMEN

The heat-shock protein 27 (HSP27) is up-regulated in tumor cells and released in their microenvironment. Here, we show that extracellular HSP27 has a proangiogenic effect evidenced on chick chorioallantoic membrane. To explore this effect, we test the recombinant human protein (rhHSP27) at physiopathological doses (0.1-10 µg/ml) onto human microvascular endothelial cells (HMECs) grown as monolayers or spheroids. When added onto HMECs, rhHSP27 dose-dependently accelerates cell migration (with a peak at 5 µg/ml) and favors spheroid sprouting within 12-24 h. rhHSP27 increases VEGF gene transcription and promotes secretion of VEGF-activating VEGF receptor type 2. Increased VEGF transcription is related to NF-κB activation in 30 min. All of these effects are initiated by rhHSP27 interaction with Toll-like receptor 3 (TLR3). Such an interaction can be detected by immunoprecipitation but does not seem to be direct, as we failed to detect an interaction between rhHSP27 and monomeric TLR3 by SPR analysis. rhHSP27 is rapidly internalized with a pool of TLR3 to the endosomal compartment (within 15-30 min), which is required for NF-κB activation in a cytosolic Ca(2+)-dependent manner. The HSP27/TLR3 interaction induces NF-κB activation, leading to VEGF-mediated cell migration and angiogenesis. Such a pathway provides alternative targets for antiangiogenic cancer therapy.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Proteínas de Choque Térmico HSP27/metabolismo , Neovascularización Fisiológica/fisiología , Receptor Toll-Like 3/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Proteínas de Choque Térmico HSP27/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Receptor Toll-Like 3/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
NPJ Vaccines ; 9(1): 111, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898106

RESUMEN

Live-Attenuated Vaccines (LAVs) stimulate robust mucosal and cellular responses and have the potential to protect against Respiratory Syncytial Virus (RSV) and Human Metapneumovirus (HMPV), the main etiologic agents of viral bronchiolitis and pneumonia in children. We inserted the RSV-F gene into an HMPV-based LAV (Metavac®) we previously validated for the protection of mice against HMPV challenge, and rescued a replicative recombinant virus (Metavac®-RSV), exposing both RSV- and HMPV-F proteins at the virion surface and expressing them in reconstructed human airway epithelium models. When administered to BALB/c mice by the intranasal route, bivalent Metavac®-RSV demonstrated its capacity to replicate with reduced lung inflammatory score and to protect against both RSV and lethal HMPV challenges in vaccinated mice while inducing strong IgG and broad RSV and HMPV neutralizing antibody responses. Altogether, our results showed the versatility of the Metavac® platform and suggested that Metavac®-RSV is a promising mucosal bivalent LAV candidate to prevent pneumovirus-induced diseases.

18.
J Gen Virol ; 94(Pt 5): 985-995, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23343627

RESUMEN

While post-transcriptional regulation of gene expression by microRNAs (miRNAs) has been shown to be involved in influenza virus replication cycle, only a few studies have further investigated this aspect in a human cellular model infected with human influenza viruses. In this study, we performed miRNA global profiling in human lung epithelial cells (A549) infected by two different subtypes of human influenza A viruses (H1N1 and H3N2). We identified a common miRNA signature in response to infection by the two different strains, highlighting a pool of five miRNAs commonly deregulated, which are known to be involved in the innate immune response or apoptosis. Among the five miRNA hits, the only upregulated miRNA in response to influenza infection corresponded to miR-146a. Based on a previously published gene expression dataset, we extracted inversely correlated miR-146a target genes and determined their first-level interactants. This functional analysis revealed eight distinct biological processes strongly associated with these interactants: Toll-like receptor pathway, innate immune response, cytokine production and apoptosis. To better understand the biological significance of miR-146a upregulation, using a reporter assay and a specific anti-miR-146a inhibitor, we confirmed that infection increased the endogenous miR-146a promoter activity and that inhibition of miR-146a significantly increased viral propagation. Altogether, our results suggest a functional role of miR-146a in the outcome of influenza infection, at the crossroads of several biological processes.


Asunto(s)
Regulación Viral de la Expresión Génica/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/virología , MicroARNs/genética , Apoptosis/genética , Línea Celular , Regulación hacia Abajo , Células Epiteliales/inmunología , Células Epiteliales/virología , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Pulmón/citología , Pulmón/virología , MicroARNs/inmunología , MicroARNs/metabolismo , Regiones Promotoras Genéticas , Regulación hacia Arriba
19.
J Virol ; 86(16): 8452-60, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22647703

RESUMEN

Previous studies have described the role of p53 isoforms, including p53ß and Δ133p53α, in the modulation of the activity of full-length p53, which regulates cell fate. In the context of influenza virus infection, an interplay between influenza viruses and p53 has been described, with p53 being involved in the antiviral response. However, the role of physiological p53 isoforms has never been explored in this context. Here, we demonstrate that p53 isoforms play a role in influenza A virus infection by using silencing and transient expression strategies in human lung epithelial cells. In addition, with the help of a panel of different influenza viruses from different subtypes, we also show that infection differentially regulates the expressions of p53ß and Δ133p53α. Altogether, our results highlight the role of p53 isoforms in the viral cycle of influenza A viruses, with p53ß and Δ133p53α acting as regulators of viral production in a p53-dependent manner.


Asunto(s)
Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Virus de la Influenza A/patogenicidad , Proteína p53 Supresora de Tumor/biosíntesis , Línea Celular , Células Epiteliales/virología , Perfilación de la Expresión Génica , Humanos , Gripe Humana , Isoformas de Proteínas/biosíntesis
20.
Virus Genes ; 47(2): 365-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23749102

RESUMEN

Human parainfluenza viruses (hPIV) are pathogens responsible for upper and lower respiratory tract infections. We previously described clinical variant strains of hPIV-2 that display unusual large syncytial cytopathic effects. Their molecular characterization revealed a recurrent conserved specific amino acid substitution: A96T in the F2 subunit of the fusion glycoprotein F. The objective of this study was to investigate the contribution of this A96T substitution to the specific hyperfusogenic properties of the hPIV-2 variant strains. Based on a transient expression strategy, quantification of cell-cell fusion assays, and flow cytometry, we have shown that the A96T mutation strongly alters the fusogenic properties of F hPIV-2, highlighting this key residue in the F2 subunit and its possible role in fusion regulation. This work highlights the benefits of monitoring genetic and phenotypic changes of circulating strains to complete our understanding of Paramyxovirus fusion and related pathogenesis.


Asunto(s)
Virus de la Parainfluenza 2 Humana/fisiología , Proteínas Virales de Fusión/metabolismo , Internalización del Virus , Sustitución de Aminoácidos , Fusión Celular , Línea Celular , Células Epiteliales/citología , Células Epiteliales/virología , Citometría de Flujo , Expresión Génica , Humanos , Mutagénesis Sitio-Dirigida , Virus de la Parainfluenza 2 Humana/genética , Proteínas Virales de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA