Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 142(2): 296-308, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20655470

RESUMEN

The broad expression of the insulin receptor suggests that the spectrum of insulin function has not been fully described. A cell type expressing this receptor is the osteoblast, a bone-specific cell favoring glucose metabolism through a hormone, osteocalcin, that becomes active once uncarboxylated. We show here that insulin signaling in osteoblasts is necessary for whole-body glucose homeostasis because it increases osteocalcin activity. To achieve this function insulin signaling in osteoblasts takes advantage of the regulation of osteoclastic bone resorption exerted by osteoblasts. Indeed, since bone resorption occurs at a pH acidic enough to decarboxylate proteins, osteoclasts determine the carboxylation status and function of osteocalcin. Accordingly, increasing or decreasing insulin signaling in osteoblasts promotes or hampers glucose metabolism in a bone resorption-dependent manner in mice and humans. Hence, in a feed-forward loop, insulin signals in osteoblasts activate a hormone, osteocalcin, that promotes glucose metabolism.


Asunto(s)
Remodelación Ósea , Metabolismo Energético , Insulina/metabolismo , Osteoblastos/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Matriz Extracelular , Glucosa/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Osteocalcina/metabolismo
2.
Calcif Tissue Int ; 114(5): 524-534, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38506955

RESUMEN

Pre-proenkephalin 1 (Penk1) is a pro-neuropeptide that belongs to the typical opioid peptide's family, having analgesic properties. We previously found Penk1 to be the most downregulated gene in a whole gene profiling analysis performed in osteoblasts subjected to microgravity as a model of mechanical unloading. In this work, Penk1 downregulation was confirmed in the bones of two in vivo models of mechanical unloading: tail-suspended and botulinum toxin A (botox)-injected mice. Consistently, in the sera from healthy volunteers subjected to bed rest, we observed an inverse correlation between PENK1 and bed rest duration. These results prompted us to investigate a role for this factor in bone. Penk1 was highly expressed in mouse bone, but its global deletion failed to impact bone metabolism in vivo. Indeed, Penk1 knock out (Penk1-/-) mice did not show an overt bone phenotype compared to the WT littermates. Conversely, in vitro Penk1 gene expression progressively increased during osteoblast differentiation and its transient silencing in mature osteoblasts by siRNAs upregulated the transcription of the Sost1 gene encoding sclerostin, and decreased Wnt3a and Col1a1 mRNAs, suggesting an altered osteoblast activity due to an impairment of the Wnt pathway. In line with this, osteoblasts treated with the Penk1 encoded peptide, Met-enkephalin, showed an increase of Osx and Col1a1 mRNAs and enhanced nodule mineralization. Interestingly, primary osteoblasts isolated from Penk1-/- mice showed lower metabolic activity, ALP activity, and nodule mineralization, as well as a lower number of CFU-F compared to osteoblasts isolated from WT mice, suggesting that, unlike the transient inhibition, the chronic Penk1 deletion affects both osteoblast differentiation and activity. Taken together, these results highlight a role for Penk1 in the regulation of the response of the bone to mechanical unloading, potentially acting on osteoblast differentiation and activity in a cell-autonomous manner.


Asunto(s)
Regulación hacia Abajo , Encefalinas , Ratones Noqueados , Osteoblastos , Animales , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Encefalinas/metabolismo , Encefalinas/genética , Ratones , Humanos , Masculino , Diferenciación Celular , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Ratones Endogámicos C57BL , Adulto
3.
Calcif Tissue Int ; 115(1): 85-96, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733412

RESUMEN

Autosomal dominant osteopetrosis type 2 (ADO2) is a rare inherited bone disorder characterised by dense but brittle bones. It displays striking phenotypic variability, with the most severe symptoms, including blindness and bone marrow failure. Disease management largely relies on symptomatic treatment since there is no safe and effective treatment. Most ADO2 cases are caused by heterozygous loss-of-function mutations in the CLCN7 gene, which encodes an essential Cl-/H+ antiporter for proper bone resorption by osteoclasts. Thus, siRNA-mediated silencing of the mutant allele is a promising therapeutic approach, but targeting bone for first-in-human translation remains challenging. Here, we demonstrate the utility of silicon-stabilised hybrid lipid nanoparticles (sshLNPs) as a next-generation nucleic acid nanocarrier capable of delivering allele-specific siRNA to bone. Using a Clcn7G213R knock-in mouse model recapitulating one of the most common human ADO2 mutations and based on the 129S genetic background (which produces the most severe disease phenotype amongst current models), we show substantial knockdown of the mutant allele in femur when siRNA targeting the pathogenic variant is delivered by sshLNPs. We observed lower areal bone mineral density in femur and reduced trabecular thickness in femur and tibia, when siRNA-loaded sshLNPs were administered subcutaneously (representing the most relevant administration route for clinical adoption and patient adherence). Importantly, sshLNPs have improved stability over conventional LNPs and enable 'post hoc loading' for point-of-care formulation. The treatment was well tolerated, suggesting that sshLNP-enabled gene therapy might allow successful clinical translation of essential new treatments for ADO2 and potentially other rare genetic bone diseases.


Asunto(s)
Alelos , Canales de Cloruro , Nanopartículas , Osteopetrosis , Fenotipo , ARN Interferente Pequeño , Animales , Canales de Cloruro/genética , Osteopetrosis/genética , Osteopetrosis/terapia , Ratones , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Huesos/metabolismo , Huesos/efectos de los fármacos , Modelos Animales de Enfermedad
4.
Calcif Tissue Int ; 112(1): 74-91, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36282293

RESUMEN

Extracellular vesicles (EVs) are potent means of cell-to-cell communication. They are released in biological fluids, including blood, urine, and saliva, and can be exploited to identify new biomarkers of diseases. We hypothesized that EVs contain molecular cargos involved in bone metabolism, possibly mirroring biological differences between postmenopausal and disuse osteoporosis. We tested this hypothesis in primary murine osteoblasts subjected to steroid depletion or to unloading, and in the serum of animal models of osteoporosis induced by ovariectomy or hindlimb tail suspension. EVs were isolated by ultracentrifugation and analysed by transmission electron microscopy, cytofluorimetry, immunoblotting and RT-PCR. Large-scale analyses were performed by Real-Time arrays and Proteome Profiler™ Antibody arrays. Finally, precise titration of analytes was carried out by ELISA assay. In vitro, we confirmed an increased release of EVs enriched in surface RANKL by primary mouse osteoblasts subjected to steroid depletion or simulated microgravity compared to controls. In vivo, circulating EVs isolated from the sera of control female mice expressed RANKL along with other genes associated with bone metabolism. Serum EVs from ovariectomized or hindlimb tail-suspended mice showed distinct molecular profiles. They expressed RANKL with different kinetics, while transcriptomic and proteomic profiles uncovered unique molecular signatures that discriminated the two conditions, unveiling exclusive molecules expressed in time- and osteoporosis type-dependent manner. These results suggest that circulating EVs could represent a new tool for monitoring the onset and the progression of diverse types of the disease in mice, paving the way for their exploitation to diagnose human osteoporosis in liquid biopsies.


Asunto(s)
Conservadores de la Densidad Ósea , Vesículas Extracelulares , Osteoporosis , Femenino , Ratones , Humanos , Animales , FN-kappa B/metabolismo , Ligando RANK/metabolismo , Proteómica , Diferenciación Celular , Osteoporosis/metabolismo , Vesículas Extracelulares/metabolismo
5.
J Cell Physiol ; 237(1): 551-565, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34224151

RESUMEN

Lipocalin 2 (LCN2) is an adipokine that accomplishes several functions in diverse organs. However, its importance in muscle and physical exercise is currently unknown. We observed that following acute high-intensity exercise ("Gran Sasso d'Italia" vertical run), LCN2 serum levels were increased. The Wnt pathway antagonist, DKK1, was also increased after the run, positively correlating with LCN2, and the same was found for the cytokine Interleukin 6. We, therefore, investigated the involvement of LCN2 in muscle physiology employing an Lcn2 global knockout (Lcn2-/- ) mouse model. Lcn2-/- mice presented with smaller muscle fibres but normal muscle performance (grip strength metre) and muscle weight. At variance with wild type (WT) mice, the inflammatory cytokine Interleukin 6 was undetectable in Lcn2-/- mice at all ages. Intriguingly, Lcn2-/- mice did not lose gastrocnemius and quadriceps muscle mass and muscle performance following hindlimb suspension, while at variance with WT, they lose soleus muscle mass. In vitro, LCN2 treatment reduced the myogenic differentiation of C2C12 and primary mouse myoblasts and influenced their gene expression. Treating myoblasts with LCN2 reduced myogenesis, suggesting that LCN2 may negatively affect muscle physiology when upregulated following high-intensity exercise.


Asunto(s)
Interleucina-6 , Lipocalina 2/metabolismo , Músculos , Animales , Expresión Génica , Humanos , Interleucina-6/metabolismo , Lipocalina 2/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35055145

RESUMEN

Lipocalin 2 (Lcn2) is an adipokine involved in bone and energy metabolism. Its serum levels correlate with bone mechanical unloading and inflammation, two conditions representing hallmarks of Duchenne Muscular Dystrophy (DMD). Therefore, we investigated the role of Lcn2 in bone loss induced by muscle failure in the MDX mouse model of DMD. We found increased Lcn2 serum levels in MDX mice at 1, 3, 6, and 12 months of age. Consistently, Lcn2 mRNA was higher in MDX versus WT muscles. Immunohistochemistry showed Lcn2 expression in mononuclear cells between muscle fibres and in muscle fibres, thus confirming the gene expression results. We then ablated Lcn2 in MDX mice, breeding them with Lcn2-/- mice (MDXxLcn2-/-), resulting in a higher percentage of trabecular volume/total tissue volume compared to MDX mice, likely due to reduced bone resorption. Moreover, MDXxLcn2-/- mice presented with higher grip strength, increased intact muscle fibres, and reduced serum creatine kinase levels compared to MDX. Consistently, blocking Lcn2 by treating 2-month-old MDX mice with an anti-Lcn2 monoclonal antibody (Lcn2Ab) increased trabecular volume, while reducing osteoclast surface/bone surface compared to MDX mice treated with irrelevant IgG. Grip force was also increased, and diaphragm fibrosis was reduced by the Lcn2Ab. These results suggest that Lcn2 could be a possible therapeutic target to treat DMD-induced bone loss.


Asunto(s)
Lipocalina 2/sangre , Lipocalina 2/genética , Distrofia Muscular de Duchenne/patología , Regulación hacia Arriba , Animales , Diafragma/patología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Fuerza Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/sangre , Distrofia Muscular de Duchenne/genética , Fenotipo
7.
J Cell Physiol ; 234(4): 4140-4153, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30171612

RESUMEN

The role of apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC) in bone healing remains to be understood. To address this issue, we investigated the requirement of inflammasome-related genes in response to bone morphogenetic protein 7 (BMP7)-induced osteoblast differentiation in vitro. To validate the importance of ASC on osteogenesis, we subjected wild-type (WT) and ASC knockout C57BL/6 mice (ASC KO) to tibia defect to evaluate the bone healing process (up to 28 days). Our in vitro data showed that there is an involvement of ASC during BMP7-induced osteoblast differentiation, concomitant to osteogenic biomarker expression. Indeed, primary osteogenic cells from ASC KO presented a lower osteogenic profile than those obtained from WT mice. To validate this hypothesis, we evaluated the bone healing process of tibia defects on both WT and ASC KO mice genotypes and the ASC KO mice were not able to fully heal tibia defects up to 28 days, whereas WT tibia defects presented a higher bone de novo volume at this stage, evidencing ASC as an important molecule during osteogenic phenotype. In addition, we have shown a higher involvement of runt-related transcription factor 2 in WT sections during bone repair, as well as circulating bone alkaline phosphatase isoform when both were compared with ASC KO mice behavior. Altogether, our results showed for the first time the involvement of inflammasome during osteoblast differentiation and osteogenesis, which opens new avenues to understand the pathways involved in bone healing.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Diferenciación Celular , Curación de Fractura , Osteoblastos/metabolismo , Osteogénesis , Tibia/metabolismo , Fracturas de la Tibia/metabolismo , Células 3T3 , Animales , Proteína Morfogenética Ósea 7/farmacología , Proteínas Adaptadoras de Señalización CARD/deficiencia , Proteínas Adaptadoras de Señalización CARD/genética , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Osteogénesis/efectos de los fármacos , Transducción de Señal , Tibia/patología , Tibia/fisiopatología , Fracturas de la Tibia/genética , Fracturas de la Tibia/patología , Fracturas de la Tibia/fisiopatología , Factores de Tiempo
8.
Br J Cancer ; 121(2): 157-171, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31239543

RESUMEN

BACKGROUND: Recurrence after >5-year disease-free survival affects one-fifth of breast cancer patients and is the clinical manifestation of cancer cell reactivation after persistent dormancy. METHODS: We investigated cellular dormancy in vitro and in vivo using breast cancer cell lines and cell and molecular biology techniques. RESULTS: We demonstrated cellular dormancy in breast cancer bone metastasis, associated with haematopoietic stem cell (HSC) mimicry, in vivo competition for HSC engraftment and non-random distribution of dormant cells at the endosteal niche. Notch2 signal implication was demonstrated by immunophenotyping the endosteal niche-associated cancer cells and upon co-culture with sorted endosteal niche cells, which inhibited breast cancer cell proliferation in a Notch2-dependent manner. Blocking this signal by in vivo acute administration of the γ-secretase inhibitor, dibenzazepine, induced dormant cell mobilisation from the endosteal niche and colonisation of visceral organs. Sorted Notch2HIGH breast cancer cells exhibited a unique stem phenotype similar to HSCs and in vitro tumour-initiating ability in mammosphere assay. Human samples confirmed the existence of a small Notch2HIGH cell population in primary and bone metastatic breast cancers, with a survival advantage for Notch2HIGH vs Notch2LOW patients. CONCLUSIONS: Notch2 represents a key determinant of breast cancer cellular dormancy and mobilisation in the bone microenvironment.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Células Madre Hematopoyéticas/fisiología , Receptor Notch2/fisiología , Animales , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Dibenzazepinas/uso terapéutico , Resistencia a Antineoplásicos , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Osteoblastos/fisiología , Receptor Notch2/antagonistas & inhibidores , Transducción de Señal/fisiología
9.
Calcif Tissue Int ; 104(3): 344-354, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30465120

RESUMEN

During mechanical unloading, endothelial cells reduce osteogenesis and increase bone resorption. Here we describe the feedback response of endothelial cells to unloaded osteoblasts. Primary endothelial cells, ex vivo mouse aortic rings and chicken egg yolk membranes were incubated with conditioned medium from mouse primary osteoblasts (OB-CM) subjected to unit gravity or simulated microgravity, to assess its effect on angiogenesis. In vivo injection of botulin toxin A (Botox) in the quadriceps and calf muscles of C57BL/6J mice was performed to mimic disuse osteoporosis. Unloaded osteoblasts showed strong upregulation of the pro-angiogenic factor, VEGF, and their conditioned medium increased in vitro endothelial cell viability, Cyclin D1 expression, migration and tube formation, ex vivo endothelial cell sprouting from aortic rings, and in ovo angiogenesis. Treatment with the VEGF blocker, avastin, prevented unloaded OB-CM-mediated in vitro and ex vivo enhancement of angiogenesis. Bone mechanical unloading by Botox treatment, known to reduce bone mass, prompted the overexpression of VEGF in osteoblasts. The cross talk between osteoblasts and endothelial cells plays a pathophysiologic role in the response of the endothelium to unloading during disuse osteoporosis. In this context, VEGF represents a prominent osteoblast factor stimulating angiogenesis.


Asunto(s)
Suspensión Trasera/fisiología , Neovascularización Fisiológica , Osteoblastos/fisiología , Estrés Mecánico , Animales , Toxinas Botulínicas Tipo A/farmacología , Células Cultivadas , Embrión de Pollo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Calcif Tissue Int ; 102(2): 131-140, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29147721

RESUMEN

Metastasis is defined as a very inefficient process, since less than 0.01% of cancer cells injected into the circulation will engraft in a distant organ, where they must acquire the ability to survive and proliferate inside a "foreign" environment. In bone metastases, the interaction with the host organ is much more favoured if tumour cells gain "osteomimicry", that is the ability to resemble a resident bone cell (i.e. the osteoblast), thus intruding in the physiology of the bone. This is accomplished by the expression of osteoblast markers (e.g. alkaline phosphatase) and the production of bone matrix proteins and paracrine factors which deregulate the physiology of bone, fuelling the so-called "vicious cycle". The main challenge of researchers is therefore to identify the genetic profile determining the osteotropism of tumour cells, which would eventually lead to bone colonisation. This could likely provide the answer to a quite intriguing question, that is why some cancers, such as prostate and breast, have a specific predilection to metastasise to the bone. Therefore, it is important to completely address the molecular mechanisms underlying this aspect of bone oncology, identifying relevant pathways, the targeting of which could make any type of bone metastasis curable or avoidable.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias Óseas/fisiopatología , Remodelación Ósea , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Exosomas/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Humanos , MicroARNs/fisiología , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Vía de Señalización Wnt , Microglobulina beta-2/fisiología
11.
J Biol Chem ; 291(13): 6754-71, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-26757819

RESUMEN

Bone degenerative pathologies like osteoporosis may be initiated by age-related shifts in anabolic and catabolic responses that control bone homeostasis. Here we show that sulforaphane (SFN), a naturally occurring isothiocyanate, promotes osteoblast differentiation by epigenetic mechanisms. SFN enhances active DNA demethylation viaTet1andTet2and promotes preosteoblast differentiation by enhancing extracellular matrix mineralization and the expression of osteoblastic markers (Runx2,Col1a1,Bglap2,Sp7,Atf4, andAlpl). SFN decreases the expression of the osteoclast activator receptor activator of nuclear factor-κB ligand (RANKL) in osteocytes and mouse calvarial explants and preferentially induces apoptosis in preosteoclastic cells via up-regulation of theTet1/Fas/Caspase 8 and Caspase 3/7 pathway. These mechanistic effects correlate with higher bone volume (∼20%) in both normal and ovariectomized mice treated with SFN for 5 weeks compared with untreated mice as determined by microcomputed tomography. This effect is due to a higher trabecular number in these mice. Importantly, no shifts in mineral density distribution are observed upon SFN treatment as measured by quantitative backscattered electron imaging. Our data indicate that the food-derived compound SFN epigenetically stimulates osteoblast activity and diminishes osteoclast bone resorption, shifting the balance of bone homeostasis and favoring bone acquisition and/or mitigation of bone resorptionin vivo Thus, SFN is a member of a new class of epigenetic compounds that could be considered for novel strategies to counteract osteoporosis.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Resorción Ósea/prevención & control , Isotiocianatos/farmacología , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Resorción Ósea/genética , Resorción Ósea/metabolismo , Resorción Ósea/patología , Caspasa 8/genética , Caspasa 8/metabolismo , Diferenciación Celular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Epigénesis Genética , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Osteoblastos/citología , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patología , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Ovariectomía , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Ligando RANK/genética , Ligando RANK/metabolismo , Transducción de Señal , Factor de Transcripción Sp7 , Sulfóxidos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Microtomografía por Rayos X
12.
Br J Cancer ; 117(7): 994-1006, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28772282

RESUMEN

BACKGROUND: Besides its role as oxygen transporter, recent findings suggest that haemoglobin beta (HBB) may have roles in other contexts. METHODS: We evaluated the impact of HBB expression in primary human breast cancers, and in breast cancer cell lines overexpressing HBB by in vitro and in vivo studies. Publicly available microarray databases were used to perform multivariate survival analyses. RESULTS: A significantly higher expression of HBB was observed in invasive carcinoma histotypes vs in situ counterparts, along with a positive correlation between HBB and the Ki67 proliferation marker. HBB-overexpressing breast cancer cells migrate and invade more, show HIF-1α upregulation and their conditioned media enhances angiogenesis. Blocking the oxygen-binding site of HBB reverts the increase of migration and HIF-1α upregulation observed in HBB-overexpressing breast cancer cells. Orthotopically implanted MDA-MB-231 overexpressing HBB (MDA-HBB) generated tumours with faster growth rate and increased neoangiogenesis. Moreover, local recurrence and visceral metastases were observed only in MDA-HBB-implanted mice. Similar results were observed with 4T1 mouse breast cancer cells. Finally, bioinformatics analyses of public data sets correlated high HBB expression with lower overall survival. CONCLUSIONS: HBB expression increases breast cancer cells aggressiveness and associates with poor prognosis, pointing to HBB as a novel biomarker for breast cancer progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Intraductal no Infiltrante/metabolismo , Carcinoma Lobular/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Neovascularización Patológica/metabolismo , Globinas beta/metabolismo , Animales , Neoplasias de la Mama/química , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/química , Carcinoma Ductal de Mama/secundario , Carcinoma Intraductal no Infiltrante/química , Carcinoma Lobular/química , Carcinoma Lobular/secundario , Línea Celular Tumoral , Movimiento Celular , Biología Computacional , Femenino , Silenciador del Gen , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Antígeno Ki-67/análisis , Ganglios Linfáticos/química , Metástasis Linfática , Ratones , Ratones Endogámicos BALB C , Invasividad Neoplásica , Trasplante de Neoplasias , Estrés Oxidativo , Tasa de Supervivencia , Análisis de Matrices Tisulares , Globinas beta/análisis , Globinas beta/genética
13.
Nat Genet ; 39(8): 960-2, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17632511

RESUMEN

Autosomal recessive osteopetrosis is usually associated with normal or elevated numbers of nonfunctional osteoclasts. Here we report mutations in the gene encoding RANKL (receptor activator of nuclear factor-KB ligand) in six individuals with autosomal recessive osteopetrosis whose bone biopsy specimens lacked osteoclasts. These individuals did not show any obvious defects in immunological parameters and could not be cured by hematopoietic stem cell transplantation; however, exogenous RANKL induced formation of functional osteoclasts from their monocytes, suggesting that they could, theoretically, benefit from exogenous RANKL administration.


Asunto(s)
Osteopetrosis/genética , Ligando RANK/genética , Animales , Consanguinidad , Femenino , Genes Recesivos , Humanos , Masculino , Ratones , Osteoclastos , Linaje
14.
PLoS Med ; 12(10): e1001888, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26461208

RESUMEN

BACKGROUND: Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease, leading to severe disability and death in young men. Death is caused by the progressive degeneration of striated muscles aggravated by sterile inflammation. The pleiotropic effects of the mutant gene also include cognitive and behavioral impairments and low bone density. Current interventions in DMD are palliative only as no treatment improves the long-term outcome. Therefore, approaches with a translational potential should be investigated, and key abnormalities downstream from the absence of the DMD product, dystrophin, appear to be strong therapeutic targets. We and others have demonstrated that DMD mutations alter ATP signaling and have identified P2RX7 purinoceptor up-regulation as being responsible for the death of muscles in the mdx mouse model of DMD and human DMD lymphoblasts. Moreover, the ATP-P2RX7 axis, being a crucial activator of innate immune responses, can contribute to DMD pathology by stimulating chronic inflammation. We investigated whether ablation of P2RX7 attenuates the DMD model mouse phenotype to assess receptor suitability as a therapeutic target. METHODS AND FINDINGS: Using a combination of molecular, histological, and biochemical methods and behavioral analyses in vivo we demonstrate, to our knowledge for the first time, that genetic ablation of P2RX7 in the DMD model mouse produces a widespread functional attenuation of both muscle and non-muscle symptoms. In dystrophic muscles at 4 wk there was an evident recovery in key functional and molecular parameters such as improved muscle structure (minimum Feret diameter, p < 0.001), increased muscle strength in vitro (p < 0.001) and in vivo (p = 0.012), and pro-fibrotic molecular signatures. Serum creatine kinase (CK) levels were lower (p = 0.025), and reduced cognitive impairment (p = 0.006) and bone structure alterations (p < 0.001) were also apparent. Reduction of inflammation and fibrosis persisted at 20 mo in leg (p = 0.038), diaphragm (p = 0.042), and heart muscles (p < 0.001). We show that the amelioration of symptoms was proportional to the extent of receptor depletion and that improvements were observed following administration of two P2RX7 antagonists (CK, p = 0.030 and p = 0.050) without any detectable side effects. However, approaches successful in animal models still need to be proved effective in clinical practice. CONCLUSIONS: These results are, to our knowledge, the first to establish that a single treatment can improve muscle function both short and long term and also correct cognitive impairment and bone loss in DMD model mice. The wide-ranging improvements reflect the convergence of P2RX7 ablation on multiple disease mechanisms affecting skeletal and cardiac muscles, inflammatory cells, brain, and bone. Given the impact of P2RX7 blockade in the DMD mouse model, this receptor is an attractive target for translational research: existing drugs with established safety records could potentially be repurposed for treatment of this lethal disease.


Asunto(s)
Distrofia Muscular de Duchenne/genética , Receptores Purinérgicos P2X7/genética , Animales , Modelos Animales de Enfermedad , Terapia Genética , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/terapia , Fenotipo , Transducción de Señal
15.
Lab Invest ; 94(3): 275-85, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24336069

RESUMEN

Autosomal dominant osteopetrosis type II (ADO II) is a rare, heritable bone disorder characterized by a high bone mass and insufficient osteoclast activity. Mutations in the CLCN7 gene have been reported to cause ADO II. To gain novel insights into the pathways dysregulated in ADOII osteoclasts, we identified changes in gene expression in osteoclasts from patients with a heterozygous mutation of CLCN7. To do this, we carried out a transcriptomic study comparing gene expression in the osteoclasts of patients with ADO II and healthy donors. Our data show that, according to our selection criteria, 182 genes were differentially expressed in osteoclasts from patients and controls. From the 18 displaying the highest change in microarray, we confirmed differential expression for seven by qPCR. Although two of them have previously been found to be expressed in osteoclasts (ITGB5 and SERPINE2), the other five (CES1 (carboxyl esterase 1), UCHL1 (ubiquitin carboxy-terminal esterase L1, also known as ubiquitin thiolesterase), WARS (tryptophanyl-tRNA synthetase), GBP4 (guanylate-binding protein 4), and PRF1) are not yet known to have a role in this cell type. At the protein level, we confirmed elevated expression of ITGB5 and reduced expression of WARS, PRF1, and SERPINE2. Transfection of ClC-7 harboring the G215R mutation into osteoclasts resulted in an increased ITGB5 and reduced PRF1 expression of borderline significance. Finally, we observed that the ADO II patients presented a normal or increased serum level of bone formation markers, demonstrating a coupling between dysfunctional osteoclasts and osteoblasts. Sphingosine kinase 1 mRNA was expressed at the same level in ADO II and control osteoclasts. In conclusion, these data suggest that in addition to an acidification dysfunction caused by the CLCN7 mutation, a change in ITGB5, PRF1, WARS, and SERPINE2 expression could be part of the osteoclastic phenotype of ADO II.


Asunto(s)
Osteoclastos/metabolismo , Osteopetrosis/genética , Adulto , Anciano , Anciano de 80 o más Años , Hidrolasas de Éster Carboxílico/genética , Estudios de Casos y Controles , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Femenino , Proteínas de Unión al GTP/genética , Humanos , Cadenas beta de Integrinas/genética , Cadenas beta de Integrinas/metabolismo , Masculino , Persona de Mediana Edad , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Mutación Missense , Osteopetrosis/metabolismo , Perforina , Fenotipo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Serpina E2/genética , Serpina E2/metabolismo , Transcriptoma , Triptófano-ARNt Ligasa/genética , Triptófano-ARNt Ligasa/metabolismo , Ubiquitina Tiolesterasa/genética , Adulto Joven
16.
Arch Biochem Biophys ; 558: 70-8, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24976175

RESUMEN

Much has been written recently on osteoclast biology, but this cell type still astonishes scientists with its multifaceted functions and unique properties. The last three decades have seen a change in thinking about the osteoclast, from a cell with a single function, which just destroys the tissue it belongs to, to an "orchestrator" implicated in the concerted regulation of bone turnover. Osteoclasts have unique morphological features, organelle distribution and plasma membrane domain organization. They require polarization to cause extracellular bone breakdown and release of the digested bone matrix products into the circulation. Osteoclasts contribute to the control of skeletal growth and renewal. Alongside other organs, including kidney, gut, thyroid and parathyroid glands, they also affect calcemia and phosphatemia. Osteoclasts are very sensitive to pro-inflammatory stimuli, and studies in the '00s ascertained their tight link with the immune system, bringing about the question why bone needs a cell regulated by the immune system to remove the extracellular matrix components. Recently, osteoclasts have been demonstrated to contribute to the hematopoietic stem cell niche, controlling local calcium concentration and regulating the turnover of factors essential for hematopoietic stem cell mobilization. Finally, osteoclasts are important regulators of osteoblast activity and angiogenesis, both by releasing factors stored in the bone matrix, and secreting "clastokines" that regulate the activity of neighboring cells. All these facets will be discussed in this review article, with the aim of underscoring The Great Beauty of the osteoclast.


Asunto(s)
Osteoclastos , Animales , Resorción Ósea/patología , Calcio/metabolismo , Homeostasis , Humanos , Inmunidad , Osteoclastos/citología , Osteoclastos/metabolismo , Osteoclastos/patología , Fosfatos/metabolismo
17.
Arch Biochem Biophys ; 561: 13-21, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25282390

RESUMEN

Much has been written recently on osteoclast biology, but this cell type still astonishes scientists with its multifaceted functions and unique properties. The last three decades have seen a change in thinking about the osteoclast, from a cell with a single function, which just destroys the tissue it belongs to, to an "orchestrator" implicated in the concerted regulation of bone turnover. Osteoclasts have unique morphological features, organelle distribution and plasma membrane domain organization. They require polarization to cause extracellular bone breakdown and release of the digested bone matrix products into the circulation. Osteoclasts contribute to the control of skeletal growth and renewal. Alongside other organs, including kidney, gut, thyroid and parathyroid glands, they also affect calcemia and phosphatemia. Osteoclasts are very sensitive to pro-inflammatory stimuli, and studies in the '00s ascertained their tight link with the immune system, bringing about the question why bone needs a cell regulated by the immune system to remove the extracellular matrix components. Recently, osteoclasts have been demonstrated to contribute to the hematopoietic stem cell niche, controlling local calcium concentration and regulating the turnover of factors essential for hematopoietic stem cell mobilization. Finally, osteoclasts are important regulators of osteoblast activity and angiogenesis, both by releasing factors stored in the bone matrix, and secreting "clastokines" that regulate the activity of neighboring cells. All these facets will be discussed in this review article, with the aim of underscoring The Great Beauty of the osteoclast.


Asunto(s)
Resorción Ósea/patología , Resorción Ósea/fisiopatología , Huesos/patología , Huesos/fisiopatología , Calcificación Fisiológica , Osteoclastos/metabolismo , Osteoclastos/patología , Animales , Humanos
18.
BMC Cancer ; 14: 154, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24597899

RESUMEN

BACKGROUND: Cancer cell adopts peculiar metabolic strategies aimed to sustain the continuous proliferation in an environment characterized by relevant fluctuations in oxygen and nutrient levels. Monocarboxylate transporters MCT1 and MCT4 can drive such adaptation permitting the transport across plasma membrane of different monocarboxylic acids involved in energy metabolism. METHODS: Role of MCTs in tumor-stroma metabolic relationship was investigated in vitro and in vivo using transformed prostate epithelial cells, carcinoma cell lines and normal fibroblasts. Moreover prostate tissues from carcinoma and benign hypertrophy cases were analyzed for individuating clinical-pathological implications of MCT1 and MCT4 expression. RESULTS: Transformed prostate epithelial (TPE) and prostate cancer (PCa) cells express both MCT1 and MCT4 and demonstrated variable dependence on aerobic glycolysis for maintaining their proliferative rate. In glucose-restriction the presence of L-lactate determined, after 24 h of treatment, in PCa cells the up-regulation of MCT1 and of cytochrome c oxidase subunit I (COX1), and reduced the activation of AMP-activated protein kinase respect to untreated cells. The blockade of MCT1 function, performed by si RNA silencing, determined an appreciable antiproliferative effect when L-lactate was utilized as energetic fuel. Accordingly L-lactate released by high glycolytic human diploid fibroblasts WI-38 sustained survival and growth of TPE and PCa cells in low glucose culture medium. In parallel, the treatment with conditioned medium from PCa cells was sufficient to induce glycolytic metabolism in WI-38 cells, with upregulation of HIF-1a and MCT4. Co-injection of PCa cells with high glycolytic WI-38 fibroblasts determined an impressive increase in tumor growth rate in a xenograft model that was abrogated by MCT1 silencing in PCa cells. The possible interplay based on L-lactate shuttle between tumor and stroma was confirmed also in human PCa tissue where we observed a positive correlation between stromal MCT4 and tumor MCT1 expression. CONCLUSIONS: Our data demonstrated that PCa progression may benefit of MCT1 expression in tumor cells and of MCT4 in tumor-associated stromal cells. Therefore, MCTs may result promising therapeutic targets in different phases of neoplastic transformation according to a strategy aimed to contrast the energy metabolic adaptation of PCa cells to stressful environments.


Asunto(s)
Lactatos/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Células del Estroma/metabolismo , Animales , Transporte Biológico , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fibroblastos/metabolismo , Expresión Génica , Silenciador del Gen , Glucólisis , Xenoinjertos , Humanos , Masculino , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Hiperplasia Prostática/metabolismo , Neoplasias de la Próstata/genética , Simportadores/genética , Simportadores/metabolismo , Microambiente Tumoral
19.
Biotechnol Bioeng ; 111(9): 1900-5, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24668294

RESUMEN

In degenerative diseases or lesions, bone tissue replacement and regeneration are important clinical goals. The most used bone substitutes today are hydroxyapatite (HA) scaffolds. These scaffolds, developed over the last few decades, present high porosity and good osteointegration, but haven't completely solved issues related to bone defects. Moreover, the exact intracellular mechanisms involved in the response to HA have yet to be addressed. This prompted us to investigate the protein networks responsible for signal transduction during early osteoblast adhesion on synthetic HA scaffolds. By performing a global kinase activity assay, we showed that there is a specific molecular machinery responding to HA contact, immediately triggering pathways leading to cytoskeleton rearrangement due to activation of Adducin 1 (ADD1), protein kinase A (PKA), protein kinase C (PKC), and vascular endothelial growth factor (VEGF). Moreover, we found a significantly increased phosphorylation of the activating site Ser-421 in histone deacetylase 1 (HDAC1), a substrate of Cyclin-Dependent Kinase 5 (CDK5). These phosphorylation events are hallmarks of osteoblast differentiation, pointing to HA surfaces ability to promote differentiation. We also found that AKT was kept active, suggesting the maintenance of survival pathways. Interestingly, though, the substrate sequence of CDK5 also presented higher phosphorylation levels when compared to control conditions. To our knowledge, this kinase has never before been related to osteoblast biology, opening a new avenue of investigation for novel pathways involved in this matter. These results suggest that HA triggers a specific intracellular signal transduction cascade during early osteoblast adhesion, activating proteins involved with cytoskeleton rearrangement, and induction of osteoblast differentiation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Durapatita/metabolismo , Osteoblastos/fisiología , Proteínas Quinasas/análisis , Proteoma/análisis , Transducción de Señal , Animales , Materiales Biocompatibles/metabolismo , Adhesión Celular , Línea Celular , Citoesqueleto/metabolismo , Ratones
20.
Trends Endocrinol Metab ; 35(6): 478-489, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38553405

RESUMEN

Musculoskeletal research should synergistically investigate bone and muscle to inform approaches for maintaining mobility and to avoid bone fractures. The relationship between sarcopenia and osteoporosis, integrated in the term 'osteosarcopenia', is underscored by the close association shown between these two conditions in many studies, whereby one entity emerges as a predictor of the other. In a recent workshop of Working Group (WG) 2 of the EU Cooperation in Science and Technology (COST) Action 'Genomics of MusculoSkeletal traits Translational Network' (GEMSTONE) consortium (CA18139), muscle characterization was highlighted as being important, but currently under-recognized in the musculoskeletal field. Here, we summarize the opinions of the Consortium and research questions around translational and clinical musculoskeletal research, discussing muscle phenotyping in human experimental research and in two animal models: zebrafish and mouse.


Asunto(s)
Fenotipo , Animales , Humanos , Músculo Esquelético/metabolismo , Pez Cebra , Ratones , Sarcopenia/metabolismo , Sarcopenia/fisiopatología , Enfermedades Musculoesqueléticas/fisiopatología , Enfermedades Musculoesqueléticas/genética , Osteoporosis/metabolismo , Osteoporosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA