Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Bioessays ; 45(10): e2300015, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37559168

RESUMEN

Microbial systems biology has made enormous advances in relating microbial physiology to the underlying biochemistry and molecular biology. By meticulously studying model microorganisms, in particular Escherichia coli and Saccharomyces cerevisiae, increasingly comprehensive computational models predict metabolic fluxes, protein expression, and growth. The modeling rationale is that cells are constrained by a limited pool of resources that they allocate optimally to maximize fitness. As a consequence, the expression of particular proteins is at the expense of others, causing trade-offs between cellular objectives such as instantaneous growth, stress tolerance, and capacity to adapt to new environments. While current computational models are remarkably predictive for E. coli and S. cerevisiae when grown in laboratory environments, this may not hold for other growth conditions and other microorganisms. In this contribution, we therefore discuss the relationship between the instantaneous growth rate, limited resources, and long-term fitness. We discuss uses and limitations of current computational models, in particular for rapidly changing and adverse environments, and propose to classify microbial growth strategies based on Grimes's CSR framework.


Asunto(s)
Escherichia coli , Saccharomyces cerevisiae , Escherichia coli/genética , Saccharomyces cerevisiae/metabolismo , Simulación por Computador , Modelos Biológicos
2.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34893866

RESUMEN

Overflow metabolism is ubiquitous in nature, and it is often considered inefficient because it leads to a relatively low biomass yield per consumed carbon. This metabolic strategy has been described as advantageous because it supports high growth rates during nutrient competition. Here, we experimentally evolved bacteria without nutrient competition by repeatedly growing and mixing millions of parallel batch cultures of Escherichia coli. Each culture originated from a water-in-oil emulsion droplet seeded with a single cell. Unexpectedly we found that overflow metabolism (acetate production) did not change. Instead, the numerical cell yield during the consumption of the accumulated acetate increased as a consequence of a reduction in cell size. Our experiments and a mathematical model show that fast growth and overflow metabolism, followed by the consumption of the overflow metabolite, can lead to a higher numerical cell yield and therefore a higher fitness compared with full respiration of the substrate. This provides an evolutionary scenario where overflow metabolism can be favorable even in the absence of nutrient competition.


Asunto(s)
Acetatos , Escherichia coli , Acetatos/metabolismo , Carbono/metabolismo , Escherichia coli/metabolismo , Glucosa/metabolismo
3.
Metab Eng ; 77: 128-142, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36963461

RESUMEN

Microbial cell factories face changing environments during industrial fermentations. Kinetic metabolic models enable the simulation of the dynamic metabolic response to these perturbations, but their development is challenging due to model complexity and experimental data requirements. An example of this is the well-established microbial cell factory Saccharomyces cerevisiae, for which no consensus kinetic model of central metabolism has been developed and implemented in industry. Here, we aim to bring the academic and industrial communities closer to this consensus model. We developed a physiology informed kinetic model of yeast glycolysis connected to central carbon metabolism by including the effect of anabolic reactions precursors, mitochondria and the trehalose cycle. To parametrize such a large model, a parameter estimation pipeline was developed, consisting of a divide and conquer approach, supplemented with regularization and global optimization. Additionally, we show how this first mechanistic description of a growing yeast cell captures experimental dynamics at different growth rates and under a strong glucose perturbation, is robust to parametric uncertainty and explains the contribution of the different pathways in the network. Such a comprehensive model could not have been developed without using steady state and glucose perturbation data sets. The resulting metabolic reconstruction and parameter estimation pipeline can be applied in the future to study other industrially-relevant scenarios. We show this by generating a hybrid CFD-metabolic model to explore intracellular glycolytic dynamics for the first time. The model suggests that all intracellular metabolites oscillate within a physiological range, except carbon storage metabolism, which is sensitive to the extracellular environment.


Asunto(s)
Glucosa , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Glucosa/metabolismo , Glucólisis , Fermentación , Carbono/metabolismo , Modelos Biológicos
4.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37173282

RESUMEN

Budding yeast uses the TORC1-Sch9p and cAMP-PKA signalling pathways to regulate adaptations to changing nutrient environments. Dynamic and single-cell measurements of the activity of these cascades will improve our understanding of the cellular adaptation of yeast. Here, we employed the AKAR3-EV biosensor developed for mammalian cells to measure the cellular phosphorylation status determined by Sch9p and PKA activity in budding yeast. Using various mutant strains and inhibitors, we show that AKAR3-EV measures the Sch9p- and PKA-dependent phosphorylation status in intact yeast cells. At the single-cell level, we found that the phosphorylation responses are homogenous for glucose, sucrose, and fructose, but heterogeneous for mannose. Cells that start to grow after a transition to mannose correspond to higher normalized Förster resonance energy transfer (FRET) levels, in line with the involvement of Sch9p and PKA pathways to stimulate growth-related processes. The Sch9p and PKA pathways have a relatively high affinity for glucose (K0.5 of 0.24 mM) under glucose-derepressed conditions. Lastly, steady-state FRET levels of AKAR3-EV seem to be independent of growth rates, suggesting that Sch9p- and PKA-dependent phosphorylation activities are transient responses to nutrient transitions. We believe that the AKAR3-EV sensor is an excellent addition to the biosensor arsenal for illuminating cellular adaptation in single yeast cells.


Asunto(s)
Técnicas Biosensibles , Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Animales , Saccharomyces cerevisiae/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Manosa/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Glucosa/metabolismo , Mamíferos/metabolismo
5.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36694952

RESUMEN

Microbial growth requires energy for maintaining the existing cells and producing components for the new ones. Microbes therefore invest a considerable amount of their resources into proteins needed for energy harvesting. Growth in different environments is associated with different energy demands for growth of yeast Saccharomyces cerevisiae, although the cross-condition differences remain poorly characterized. Furthermore, a direct comparison of the energy costs for the biosynthesis of the new biomass across conditions is not feasible experimentally; computational models, on the contrary, allow comparing the optimal metabolic strategies and quantify the respective costs of energy and nutrients. Thus in this study, we used a resource allocation model of S. cerevisiae to compare the optimal metabolic strategies between different conditions. We found that S. cerevisiae with respiratory-impaired mitochondria required additional energetic investments for growth, while growth on amino acid-rich media was not affected. Amino acid supplementation in anaerobic conditions also was predicted to rescue the growth reduction in mitochondrial respiratory shuttle-deficient mutants of S. cerevisiae. Collectively, these results point to elevated costs of resolving the redox imbalance caused by de novo biosynthesis of amino acids in mitochondria. To sum up, our study provides an example of how resource allocation modeling can be used to address and suggest explanations to open questions in microbial physiology.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/metabolismo , Saccharomyces/metabolismo , Biomasa , Mitocondrias/metabolismo , Aminoácidos/metabolismo , Respiración , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Food Microbiol ; 110: 104167, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36462823

RESUMEN

Climate change increases sugar content in grapes, resulting in unwanted increase in ethanol content of wine. Lachancea thermotolerans ferments glucose and fructose into both ethanol and lactate, decreasing final ethanol content and positively affecting wine acidity. Reported Lachancea thermotolerans strains show big variation in lactate production during fermentation. However, a mechanistic understanding of this lactate producing phenotype is currently lacking. Through a combination of metabolomics, transcriptomics, genomics and computational methods we show that the lactate production is induced by amino acid limitation in a high lactate producing strain. We found in fermentations in synthetic grape juice media that lactate production starts in the last stages of growth, marked by decreased growth rate and increased expression levels of stress related genes. This onset of lactate production is specific for the high lactate producing strain and independent of oxygen availability. The onset of lactate production was changed by increased amino acid content of the media, and it is shown by both computational methods and amino acid measurements that at the onset of lactate production amino acids become limiting for growth. This study shows that lactate production of Lachancea thermotolerans is directly linked to nitrogen availability in the media, an insight that can further aid in the improvement of wine quality.


Asunto(s)
Ácido Láctico , Saccharomycetales , Etanol , Aminoácidos , Medios de Cultivo
7.
Proc Natl Acad Sci U S A ; 117(19): 10294-10304, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32341162

RESUMEN

Many cancer cells consume glutamine at high rates; counterintuitively, they simultaneously excrete glutamate, the first intermediate in glutamine metabolism. Glutamine consumption has been linked to replenishment of tricarboxylic acid cycle (TCA) intermediates and synthesis of adenosine triphosphate (ATP), but the reason for glutamate excretion is unclear. Here, we dynamically profile the uptake and excretion fluxes of a liver cancer cell line (HepG2) and use genome-scale metabolic modeling for in-depth analysis. We find that up to 30% of the glutamine is metabolized in the cytosol, primarily for nucleotide synthesis, producing cytosolic glutamate. We hypothesize that excreting glutamate helps the cell to increase the nucleotide synthesis rate to sustain growth. Indeed, we show experimentally that partial inhibition of glutamate excretion reduces cell growth. Our integrative approach thus links glutamine addiction to glutamate excretion in cancer and points toward potential drug targets.


Asunto(s)
Adenosina Trifosfato/metabolismo , Carcinoma Hepatocelular/patología , Citosol/metabolismo , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Neoplasias Hepáticas/patología , Mitocondrias/metabolismo , Carcinoma Hepatocelular/metabolismo , Células Cultivadas , Ciclo del Ácido Cítrico , Metabolismo Energético , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo
8.
Mol Syst Biol ; 17(4): e10093, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33821549

RESUMEN

Cells adapt to different conditions via gene expression that tunes metabolism for maximal fitness. Constraints on cellular proteome may limit such expression strategies and introduce trade-offs. Resource allocation under proteome constraints has explained regulatory strategies in bacteria. It is unclear, however, to what extent these constraints can predict evolutionary changes, especially for microorganisms that evolved under nutrient-rich conditions, i.e., multiple available nitrogen sources, such as Lactococcus lactis. Here, we present a proteome-constrained genome-scale metabolic model of L. lactis (pcLactis) to interpret growth on multiple nutrients. Through integration of proteomics and flux data, in glucose-limited chemostats, the model predicted glucose and arginine uptake as dominant constraints at low growth rates. Indeed, glucose and arginine catabolism were found upregulated in evolved mutants. At high growth rates, pcLactis correctly predicted the observed shutdown of arginine catabolism because limited proteome availability favored lactate for ATP production. Thus, our model-based analysis is able to identify and explain the proteome constraints that limit growth rate in nutrient-rich environments and thus form targets of fitness improvement.


Asunto(s)
Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Aptitud Genética , Glucosa/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Proteoma/metabolismo , Adenosina Trifosfato/metabolismo , Evolución Biológica , Modelos Biológicos , Mutación/genética , Reproducibilidad de los Resultados
9.
Metab Eng ; 64: 1-14, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33418011

RESUMEN

In S. cerevisiae and many other micro-organisms an increase in metabolic efficiency (i.e. ATP yield on carbon) is accompanied by a decrease in growth rate. From a fundamental point of view, studying these yield-rate trade-offs provides insight in for example microbial evolution and cellular regulation. From a biotechnological point of view, increasing the ATP yield on carbon might increase the yield of anabolic products. We here aimed to select S. cerevisiae mutants with an increased biomass yield. Serial propagation of individual cells in water-in-oil emulsions previously enabled the selection of lactococci with increased biomass yields, and adapting this protocol for yeast allowed us to enrich an engineered Crabtree-negative S. cerevisiae strain with a high biomass yield on glucose. When we started the selection with an S. cerevisiae deletion collection, serial propagation in emulsion enriched hxk2Δ and reg1Δ strains with an increased biomass yield on glucose. Surprisingly, a tps1Δ strain was highly abundant in both emulsion- and suspension-propagated populations. In a separate experiment we propagated a chemically mutagenized S. cerevisiae population in emulsion, which resulted in mutants with a higher cell number yield on glucose, but no significantly changed biomass yield. Genome analyses indicate that genes involved in glucose repression and cell cycle processes play a role in the selected phenotypes. The repeated identification of mutations in genes involved in glucose-repression indicates that serial propagation in emulsion is a valuable tool to study metabolic efficiency in S. cerevisiae.


Asunto(s)
Glucosa , Saccharomyces cerevisiae , Biomasa , Tamaño de la Célula , Emulsiones , Saccharomyces cerevisiae/genética , Agua
10.
Biotechnol Bioeng ; 118(1): 223-237, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32926401

RESUMEN

In this study, we have investigated the cheese starter culture as a microbial community through a question: can the metabolic behaviour of a co-culture be explained by the characterized individual organism that constituted the co-culture? To address this question, the dairy-origin lactic acid bacteria Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. lactis, Streptococcus thermophilus and Leuconostoc mesenteroides, commonly used in cheese starter cultures, were grown in pure and four different co-cultures. We used a dynamic metabolic modelling approach based on the integration of the genome-scale metabolic networks of the involved organisms to simulate the co-cultures. The strain-specific kinetic parameters of dynamic models were estimated using the pure culture experiments and they were subsequently applied to co-culture models. Biomass, carbon source, lactic acid and most of the amino acid concentration profiles simulated by the co-culture models fit closely to the experimental results and the co-culture models explained the mechanisms behind the dynamic microbial abundance. We then applied the co-culture models to estimate further information on the co-cultures that could not be obtained by the experimental method used. This includes estimation of the profile of various metabolites in the co-culture medium such as flavour compounds produced and the individual organism level metabolic exchange flux profiles, which revealed the potential metabolic interactions between organisms in the co-cultures.


Asunto(s)
Queso/microbiología , Lactobacillales/crecimiento & desarrollo , Modelos Biológicos , Técnicas de Cocultivo
11.
PLoS Comput Biol ; 16(1): e1007559, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31986156

RESUMEN

In this paper we try to describe all possible molecular states (phenotypes) for a cell that fabricates itself at a constant rate, given its enzyme kinetics and the stoichiometry of all reactions. For this, we must understand the process of cellular growth: steady-state self-fabrication requires a cell to synthesize all of its components, including metabolites, enzymes and ribosomes, in proportions that match its own composition. Simultaneously, the concentrations of these components affect the rates of metabolism and biosynthesis, and hence the growth rate. We here derive a theory that describes all phenotypes that solve this circular problem. All phenotypes can be described as a combination of minimal building blocks, which we call Elementary Growth Modes (EGMs). EGMs can be used as the theoretical basis for all models that explicitly model self-fabrication, such as the currently popular Metabolism and Expression models. We then use our theory to make concrete biological predictions. We find that natural selection for maximal growth rate drives microorganisms to states of minimal phenotypic complexity: only one EGM will be active when growth rate is maximised. The phenotype of a cell is only extended with one more EGM whenever growth becomes limited by an additional biophysical constraint, such as a limited solvent capacity of a cellular compartment. The theory presented here extends recent results on Elementary Flux Modes: the minimal building blocks of cellular growth models that lack the self-fabrication aspect. Our theory starts from basic biochemical and evolutionary considerations, and describes unicellular life, both in growth-promoting and in stress-inducing environments, in terms of EGMs.


Asunto(s)
Fenómenos Fisiológicos Celulares/fisiología , Enzimas/metabolismo , Metabolismo/fisiología , Modelos Biológicos , Algoritmos , Biología Computacional , Cinética , Fenotipo
12.
Cell Mol Life Sci ; 77(3): 441-453, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31758233

RESUMEN

Living cells can express different metabolic pathways that support growth. The criteria that determine which pathways are selected in which environment remain unclear. One recurrent selection is overflow metabolism: the simultaneous usage of an ATP-efficient and -inefficient pathway, shown for example in Escherichia coli, Saccharomyces cerevisiae and cancer cells. Many models, based on different assumptions, can reproduce this observation. Therefore, they provide no conclusive evidence which mechanism is causing overflow metabolism. We compare the mathematical structure of these models. Although ranging from flux balance analyses to self-fabricating metabolism and expression models, we can rewrite all models into one standard form. We conclude that all models predict overflow metabolism when two, model-specific, growth-limiting constraints are hit. This is consistent with recent theory. Thus, identifying these two constraints is essential for understanding overflow metabolism. We list all imposed constraints by these models, so that they can hopefully be tested in future experiments.


Asunto(s)
Escherichia coli/metabolismo , Redes y Vías Metabólicas/fisiología , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Modelos Biológicos
13.
J Dairy Sci ; 104(8): 8530-8540, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33934870

RESUMEN

The turbidity of milk prohibits the use of optical density measurements for strain characterizations. This often limits research to laboratory media. Here, we cleared milk through centrifugation to remove insoluble milk solids. This resulted in a clear liquid phase, termed milk serum, in which optical density measurements can be used to track microbial growth until a pH of 5.2 is reached. At pH 5.2 coagulation of the soluble protein occurs, making the medium opaque again. We found that behavior in milk serum was predictive of that in milk for 39 Lactococcus lactis (R2 = 0.81) and to a lesser extent for 42 Lactiplantibacillus plantarum (formerly Lactobacillus plantarum; R2 = 0.49) strains. Hence, milk serum can be used as an optically clear alternative to milk for comparison of microbial growth and metabolic characteristics. Characterization of the growth rate, specific acidification rate for optical density at a wavelength of 600 nm, and the amount of acid produced per unit of biomass for all these strains in milk serum, showed that almost all strains could grow in milk, with higher specific acidification and growth rates of Lc. lactis strains compared with Lb. plantarum strains. Nondairy Lc. lactis isolates had a lower growth and specific acidification rate than dairy isolates. The amount of acid produced per unit biomass was relatively high and similar for Lc. lactis dairy and nondairy isolates, as opposed to Lb. plantarum isolates. Lactococcus lactis ssp. lactis showed slightly lower growth and acidification rates when compared with ssp. cremoris. For Lc. lactis strains a doubling of the specific acidification rate occurred with a doubling of the maximum growth rate. This relation was not found for Lb. plantarum strains, where the acidification rate remained relatively constant across 39 strains with growth rates ranging from 0.2 h-1 to 0.3 h-1. We conclude that milk serum is a valuable alternative to milk for high-throughput strain characterization during milk fermentation.


Asunto(s)
Lactococcus lactis , Leche , Animales , Centrifugación/veterinaria , Microbiología de Alimentos , Concentración de Iones de Hidrógeno
14.
PLoS Comput Biol ; 15(3): e1006858, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30856167

RESUMEN

Growth rate is a near-universal selective pressure across microbial species. High growth rates require hundreds of metabolic enzymes, each with different nonlinear kinetics, to be precisely tuned within the bounds set by physicochemical constraints. Yet, the metabolic behaviour of many species is characterized by simple relations between growth rate, enzyme expression levels and metabolic rates. We asked if this simplicity could be the outcome of optimisation by evolution. Indeed, when the growth rate is maximized-in a static environment under mass-conservation and enzyme expression constraints-we prove mathematically that the resulting optimal metabolic flux distribution is described by a limited number of subnetworks, known as Elementary Flux Modes (EFMs). We show that, because EFMs are the minimal subnetworks leading to growth, a small active number automatically leads to the simple relations that are measured. We find that the maximal number of flux-carrying EFMs is determined only by the number of imposed constraints on enzyme expression, not by the size, kinetics or topology of the network. This minimal-EFM extremum principle is illustrated in a graphical framework, which explains qualitative changes in microbial behaviours, such as overflow metabolism and co-consumption, and provides a method for identification of the enzyme expression constraints that limit growth under the prevalent conditions. The extremum principle applies to all microorganisms that are selected for maximal growth rates under protein concentration constraints, for example the solvent capacities of cytosol, membrane or periplasmic space.


Asunto(s)
Análisis de Flujos Metabólicos , Redes y Vías Metabólicas , Algoritmos , Catálisis , Enzimas/metabolismo , Cinética , Proteínas/metabolismo
15.
BMC Evol Biol ; 19(1): 15, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30630406

RESUMEN

BACKGROUND: A central theme in (micro)biology is understanding the molecular basis of fitness i.e. which strategies are successful under which conditions; how do organisms implement such strategies at the molecular level; and which constraints shape the trade-offs between alternative strategies. Highly standardized microbial laboratory evolution experiments are ideally suited to approach these questions. For example, prolonged chemostats provide a constant environment in which the growth rate can be set, and the adaptive process of the organism to such environment can be subsequently characterized. RESULTS: We performed parallel laboratory evolution of Lactococcus lactis in chemostats varying the quantitative value of the selective pressure by imposing two different growth rates. A mutation in one specific amino acid residue of the global transcriptional regulator of carbon metabolism, CcpA, was selected in all of the evolution experiments performed. We subsequently showed that this mutation confers predictable fitness improvements at other glucose-limited growth rates as well. In silico protein structural analysis of wild type and evolved CcpA, as well as biochemical and phenotypic assays, provided the underpinning molecular mechanisms that resulted in the specific reprogramming favored in constant environments. CONCLUSION: This study provides a comprehensive understanding of a case of microbial evolution and hints at the wide dynamic range that a single fitness-enhancing mutation may display. It demonstrates how the modulation of a pleiotropic regulator can be used by cells to improve one trait while simultaneously work around other limiting constraints, by fine-tuning the expression of a wide range of cellular processes.


Asunto(s)
Adaptación Fisiológica , Proteínas Bacterianas/metabolismo , Glucosa/farmacología , Lactococcus lactis/genética , Selección Genética , Secuencia de Bases , Criopreservación , Evolución Molecular Dirigida , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Lactococcus lactis/efectos de los fármacos , Mutación/genética , Fenotipo , Termodinámica
16.
Bioinformatics ; 34(13): i4-i12, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29950011

RESUMEN

Motivation: Our society has become data-rich to the extent that research in many areas has become impossible without computational approaches. Educational programmes seem to be lagging behind this development. At the same time, there is a growing need not only for strong data science skills, but foremost for the ability to both translate between tools and methods on the one hand, and application and problems on the other. Results: Here we present our experiences with shaping and running a masters' programme in bioinformatics and systems biology in Amsterdam. From this, we have developed a comprehensive philosophy on how translation in training may be achieved in a dynamic and multidisciplinary research area, which is described here. We furthermore describe two requirements that enable translation, which we have found to be crucial: sufficient depth and focus on multidisciplinary topic areas, coupled with a balanced breadth from adjacent disciplines. Finally, we present concrete suggestions on how this may be implemented in practice, which may be relevant for the effectiveness of life science and data science curricula in general, and of particular interest to those who are in the process of setting up such curricula. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/educación , Curriculum , Ciencia de los Datos/educación , Humanos
17.
PLoS Comput Biol ; 14(9): e1006412, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30235207

RESUMEN

One of the marvels of biology is the phenotypic plasticity of microorganisms. It allows them to maintain high growth rates across conditions. Studies suggest that cells can express metabolic enzymes at tuned concentrations through adjustment of gene expression. The associated transcription factors are often regulated by intracellular metabolites. Here we study metabolite-mediated regulation of metabolic-gene expression that maximises metabolic fluxes across conditions. We developed an adaptive control theory, qORAC (for 'Specific Flux (q) Optimization by Robust Adaptive Control'), and illustrate it with several examples of metabolic pathways. The key feature of the theory is that it does not require knowledge of the regulatory network, only of the metabolic part. We derive that maximal metabolic flux can be maintained in the face of varying N environmental parameters only if the number of transcription-factor binding metabolites is at least equal to N. The controlling circuits appear to require simple biochemical kinetics. We conclude that microorganisms likely can achieve maximal rates in metabolic pathways, in the face of environmental changes.


Asunto(s)
Redes y Vías Metabólicas , Biología de Sistemas , Factores de Transcripción/metabolismo , Algoritmos , Fenómenos Bioquímicos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Galactosa/química , Expresión Génica , Cinética , Modelos Biológicos , Unión Proteica , Termodinámica
18.
Appl Microbiol Biotechnol ; 103(7): 3153-3165, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30712128

RESUMEN

Leuconostoc mesenteroides subsp. cremoris is an obligate heterolactic fermentative lactic acid bacterium that is mostly used in industrial dairy fermentations. The phosphoketolase pathway (PKP) is a unique feature of the obligate heterolactic fermentation, which leads to the production of lactate, ethanol, and/or acetate, and the final product profile of PKP highly depends on the energetics and redox state of the organism. Another characteristic of the L. mesenteroides subsp. cremoris is the production of aroma compounds in dairy fermentation, such as in cheese production, through the utilization of citrate. Considering its importance in dairy fermentation, a detailed metabolic characterization of the organism is necessary for its more efficient use in the industry. To this aim, a genome-scale metabolic model of dairy-origin L. mesenteroides subsp. cremoris ATCC 19254 (iLM.c559) was reconstructed to explain the energetics and redox state mechanisms of the organism in full detail. The model includes 559 genes governing 1088 reactions between 1129 metabolites, and the reactions cover citrate utilization and citrate-related flavor metabolism. The model was validated by simulating co-metabolism of glucose and citrate and comparing the in silico results to our experimental results. Model simulations further showed that, in co-metabolism of citrate and glucose, no flavor compounds were produced when citrate could stimulate the formation of biomass. Significant amounts of flavor metabolites (e.g., diacetyl and acetoin) were only produced when citrate could not enhance growth, which suggests that flavor formation only occurs under carbon and ATP excess. The effects of aerobic conditions and different carbon sources on product profiles and growth were also investigated using the reconstructed model. The analyses provided further insights for the growth stimulation and flavor formation mechanisms of the organism.


Asunto(s)
Genoma Bacteriano , Leuconostoc mesenteroides/genética , Redes y Vías Metabólicas , Odorantes , Adenosina Trifosfato/metabolismo , Aerobiosis , Carbono/metabolismo , Queso/microbiología , Citratos/metabolismo , Fermentación , Microbiología de Alimentos , Genes Bacterianos , Leuconostoc mesenteroides/metabolismo , Oxidación-Reducción
19.
Appl Environ Microbiol ; 83(21)2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28842544

RESUMEN

Whooping cough is a highly contagious respiratory disease caused by Bordetella pertussis Despite widespread vaccination, its incidence has been rising alarmingly, and yet, the physiology of B. pertussis remains poorly understood. We combined genome-scale metabolic reconstruction, a novel optimization algorithm, and experimental data to probe the full metabolic potential of this pathogen, using B. pertussis strain Tohama I as a reference. Experimental validation showed that B. pertussis secretes a significant proportion of nitrogen as arginine and purine nucleosides, which may contribute to modulation of the host response. We also found that B. pertussis can be unexpectedly versatile, being able to metabolize many compounds while displaying minimal nutrient requirements. It can grow without cysteine, using inorganic sulfur sources, such as thiosulfate, and it can grow on organic acids, such as citrate or lactate, as sole carbon sources, providing in vivo demonstration that its tricarboxylic acid (TCA) cycle is functional. Although the metabolic reconstruction of eight additional strains indicates that the structural genes underlying this metabolic flexibility are widespread, experimental validation suggests a role of strain-specific regulatory mechanisms in shaping metabolic capabilities. Among five alternative strains tested, three strains were shown to grow on substrate combinations requiring a functional TCA cycle, but only one strain could use thiosulfate. Finally, the metabolic model was used to rationally design growth media with >2-fold improvements in pertussis toxin production. This study thus provides novel insights into B. pertussis physiology and highlights the potential, but also the limitations, of models based solely on metabolic gene content.IMPORTANCE The metabolic capabilities of Bordetella pertussis, the causative agent of whooping cough, were investigated from a systems-level perspective. We constructed a comprehensive genome-scale metabolic model for B. pertussis and challenged its predictions experimentally. This systems approach shed light on new potential host-microbe interactions and allowed us to rationally design novel growth media with >2-fold improvements in pertussis toxin production. Most importantly, we also uncovered the potential for metabolic flexibility of B. pertussis (significantly larger range of substrates than previously alleged; novel active pathways allowing growth in minimal, nearly mineral nutrient combinations where only the carbon source must be organic), although our results also highlight the importance of strain-specific regulatory determinants in shaping metabolic capabilities. Deciphering the underlying regulatory mechanisms appears to be crucial for a comprehensive understanding of B. pertussis's lifestyle and the epidemiology of whooping cough. The contribution of metabolic models in this context will require the extension of the genome-scale metabolic model to integrate this regulatory dimension.

20.
Bioessays ; 37(1): 34-45, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25350875

RESUMEN

After more than a century of research on glycolysis, we have detailed descriptions of its molecular organization, but despite this wealth of knowledge, linking the enzyme properties to metabolic pathway behavior remains challenging. These challenges arise from multi-layered regulation and the context and time dependence of component functions. However, when viewed as a system that functions according to the principles of supply and demand, a simplifying theoretical framework can be applied to study its regulation logic and to assess the coherence of experimental interpretations. These principles are universally applicable, as they emphasize the common metabolic tasks of glycolysis: the provision of free-energy carriers, and precursors for biosynthesis and stress-related compounds. Here we will review the regulation of multi-tasking by glycolysis and consider how an understanding of this central metabolic pathway can be pursued using general principles, rather than focusing on the biochemical details of constituent components.


Asunto(s)
Vías Biosintéticas , Metabolismo Energético , Glucólisis , Adenosina Trifosfato/metabolismo , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA