Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Mol Cell Cardiol ; 191: 12-22, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643934

RESUMEN

Doxorubicin (DOX) is a widely used chemotherapeutic agent that can cause serious cardiotoxic side effects, leading to heart failure (HF). Impaired mitochondrial function is thought to be key factor driving progression into HF. We have previously shown in a rat model of DOX-HF that heart failure with reduced ejection fraction correlates with mitochondrial loss and dysfunction. Adenosine monophosphate-dependent kinase (AMPK) is a cellular energy sensor, regulating mitochondrial biogenesis and energy metabolism, including fatty acid oxidation. We hypothesised that AMPK activation could restore mitochondrial function and therefore be a novel cardioprotective strategy for the prevention of DOX-HF. Consequently, we set out to assess whether 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR), an activator of AMPK, could prevent cardiac functional decline in this chronic intravenous rat model of DOX-HF. In line with our hypothesis, AICAR improved cardiac systolic function. AICAR furthermore improved cardiac mitochondrial fatty acid oxidation, independent of mitochondrial number, and in the absence of observable AMPK-activation. In addition, we found that AICAR prevented loss of myocardial mass. RNAseq analysis showed that this may be driven by normalisation of pathways associated with ribosome function and protein synthesis, which are impaired in DOX-treated rat hearts. AICAR furthermore prevented dyslipidemia and excessive body-weight loss in DOX-treated rats, which may contribute to preservation of myocardial mass. Though it is unclear whether AICAR exerted its cardioprotective effect through cardiac or extra-cardiac AMPK-activation or via an AMPK-independent effect, these results show promise for the use of AICAR as a cardioprotective agent in DOX-HF to both preserve cardiac function and mass.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Aminoimidazol Carboxamida , Cardiotónicos , Doxorrubicina , Insuficiencia Cardíaca , Ribonucleótidos , Animales , Doxorrubicina/efectos adversos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/prevención & control , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/tratamiento farmacológico , Ribonucleótidos/farmacología , Masculino , Cardiotónicos/farmacología , Ratas , Proteínas Quinasas Activadas por AMP/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Ácidos Grasos/metabolismo , Modelos Animales de Enfermedad
2.
Diabetologia ; 66(12): 2320-2331, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37670017

RESUMEN

AIMS/HYPOTHESIS: Metformin is increasingly used therapeutically during pregnancy worldwide, particularly in the treatment of gestational diabetes, which affects a substantial proportion of pregnant women globally. However, the impact on placental metabolism remains unclear. In view of the association between metformin use in pregnancy and decreased birthweight, it is essential to understand how metformin modulates the bioenergetic and anabolic functions of the placenta. METHODS: A cohort of 55 placentas delivered by elective Caesarean section at term was collected from consenting participants. Trophoblasts were isolated from the placental samples and treated in vitro with clinically relevant doses of metformin (0.01 mmol/l or 0.1 mmol/l) or vehicle. Respiratory function was assayed using high-resolution respirometry to measure oxygen concentration and calculated [Formula: see text]. Glycolytic rate and glycolytic stress assays were performed using Agilent Seahorse XF assays. Fatty acid uptake and oxidation measurements were conducted using radioisotope-labelled assays. Lipidomic analysis was conducted using LC-MS. Gene expression and protein analysis were performed using RT-PCR and western blotting, respectively. RESULTS: Complex I-supported oxidative phosphorylation was lower in metformin-treated trophoblasts (0.01 mmol/l metformin, 61.7% of control, p<0.05; 0.1 mmol/l metformin, 43.1% of control, p<0.001). The proton efflux rate arising from glycolysis under physiological conditions was increased following metformin treatment, up to 23±5% above control conditions following treatment with 0.1 mmol/l metformin (p<0.01). There was a significant increase in triglyceride concentrations in trophoblasts treated with 0.1 mmol/l metformin (p<0.05), particularly those of esters of long-chain polyunsaturated fatty acids. Fatty acid oxidation was reduced by ~50% in trophoblasts treated with 0.1 mmol/l metformin compared with controls (p<0.001), with no difference in uptake between treatment groups. CONCLUSIONS/INTERPRETATION: In primary trophoblasts derived from term placentas metformin treatment caused a reduction in oxidative phosphorylation through partial inactivation of complex I and potentially by other mechanisms. Metformin-treated trophoblasts accumulate lipids, particularly long- and very-long-chain polyunsaturated fatty acids. Our findings raise clinically important questions about the balance of risk of metformin use during pregnancy, particularly in situations where the benefits are not clear-cut and alternative therapies are available.


Asunto(s)
Metformina , Placenta , Humanos , Femenino , Embarazo , Metformina/farmacología , Metformina/uso terapéutico , Metformina/metabolismo , Trofoblastos/metabolismo , Cesárea , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo
3.
Small ; : e1801022, 2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29974621

RESUMEN

Abdominal miliary spread and metastasis is one of the most aggressive features in advanced ovarian cancer patients. The current standard treatment of advanced ovarian cancer is cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC). However, most patients cannot receive optimal CRS outcomes due to the extreme difficulty of completely excising all microtumors during operation. Though HIPEC can improve prognosis, treatment is untargeted and may damage healthy organs and cause complications. New strategies for precise detection and complete elimination of disseminated microtumors without side effects are therefore highly desirable. Here, cisplatin-loaded gap-enhanced Raman tags (C-GERTs) are designed specifically for the intraoperative detection and elimination of unresectable disseminated advanced ovarian tumors. With unique and strong Raman signals, good biocompatibility, decent plasmonic photothermal conversion, and good drug loading capacity, C-GERTs enable detection and specific elimination of microtumors with a minimum diameter of 1 mm via chemo-photothermal synergistic therapy, causing minimal side effects and significantly prolonging survival in mice. The results demonstrate that C-GERTs-based chemo-photothermal synergistic therapy can effectively control the spread of disseminated tumors in mice and has potential as a safe and powerful method for treatment of advanced ovarian cancers, to improve survival and life quality of patients.

4.
Nano Lett ; 15(5): 3519-23, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25859743

RESUMEN

We present extremely narrow collective plasmon resonances observed in gold nanostripe arrays fabricated on a thin gold film, with the spectral line full width at half-maximum (fwhm) as low as 5 nm and quality factors Q reaching 300, at important fiber-optic telecommunication wavelengths around 1.5 µm. Using these resonances, we demonstrate a hybrid graphene-plasmonic modulator with the modulation depth of 20% in reflection operated by gating of a single layer graphene, the largest measured so far.

5.
Mol Metab ; 80: 101875, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218535

RESUMEN

OBJECTIVE: We investigated the potential involvement of miRNAs in the developmental programming of cardiovascular diseases (CVD) by maternal obesity. METHODS: Serum miRNAs were measured in individuals from the Helsinki Birth Cohort (with known maternal body mass index), and a mouse model was used to determine causative effects of maternal obesity during pregnancy and ischemia-reperfusion on offspring cardiac miRNA expression and release. RESULTS: miR-15b-5p levels were increased in the sera of males born to mothers with higher BMI and in the hearts of adult mice born to obese dams. In an ex-vivo model of perfused mouse hearts, we demonstrated that cardiac tissue releases miR-15b-5p, and that some of the released miR-15b-5p was contained within small extracellular vesicles (EVs). We also demonstrated that release was higher from hearts exposed to maternal obesity following ischaemia/reperfusion. Over-expression of miR-15b-5p in vitro led to loss of outer mitochondrial membrane stability and to repressed fatty acid oxidation in cardiomyocytes. CONCLUSIONS: These findings suggest that miR-15-b could play a mechanistic role in the dysregulation of cardiac metabolism following exposure to an in utero obesogenic environment and that its release in cardiac EVs following ischaemic damage may be a novel factor contributing to inter-organ communication between the programmed heart and peripheral tissues.


Asunto(s)
Enfermedades Cardiovasculares , Vesículas Extracelulares , MicroARNs , Obesidad Materna , Daño por Reperfusión , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Embarazo , Enfermedades Cardiovasculares/metabolismo , Vesículas Extracelulares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Obesidad Materna/metabolismo , Daño por Reperfusión/metabolismo
6.
Nat Commun ; 10(1): 3905, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31467266

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) is advantageous over fluorescence for bioimaging due to ultra-narrow linewidth of the fingerprint spectrum and weak photo-bleaching effect. However, the existing SERS imaging speed lags far behind practical needs, mainly limited by Raman signals of SERS nanoprobes. In this work, we report ultrabright gap-enhanced Raman tags (GERTs) with strong electromagnetic hot spots from interior sub-nanometer gaps and external petal-like shell structures, larger immobilization surface area, and Raman cross section of reporter molecules. These GERTs reach a Raman enhancement factor beyond 5 × 109 and a detection sensitivity down to a single-nanoparticle level. We use a 370 µW laser to realize high-resolution cell imaging within 6 s and high-contrast (a signal-to-background ratio of 80) wide-area (3.2 × 2.8 cm2) sentinel lymph node imaging within 52 s. These nanoprobes offer a potential solution to overcome the current bottleneck in the field of SERS-based bioimaging.


Asunto(s)
Espectrometría Raman/métodos , Animales , Línea Celular Tumoral , Campos Electromagnéticos , Femenino , Fluorescencia , Oro/química , Humanos , Rayos Láser , Ratones , Ratones Desnudos , Nanopartículas , Ganglio Linfático Centinela/diagnóstico por imagen , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA