Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38964327

RESUMEN

Dexamethasone is a life-saving treatment for severe COVID-19, yet its mechanism of action is unknown, and many patients deteriorate or die despite timely treatment initiation. Here, we identify dexamethasone treatment-induced cellular and molecular changes associated with improved survival in COVID-19 patients. We observed a reversal of transcriptional hallmark signatures in monocytes associated with severe COVID-19 and the induction of a monocyte substate characterized by the expression of glucocorticoid-response genes. These molecular responses to dexamethasone were detected in circulating and pulmonary monocytes, and they were directly linked to survival. Monocyte single-cell RNA sequencing (scRNA-seq)-derived signatures were enriched in whole blood transcriptomes of patients with fatal outcome in two independent cohorts, highlighting the potential for identifying non-responders refractory to dexamethasone. Our findings link the effects of dexamethasone to specific immunomodulation and reversal of monocyte dysregulation, and they highlight the potential of single-cell omics for monitoring in vivo target engagement of immunomodulatory drugs and for patient stratification for precision medicine approaches.

2.
Nat Immunol ; 22(11): 1382-1390, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34663978

RESUMEN

Intergenerational inheritance of immune traits linked to epigenetic modifications has been demonstrated in plants and invertebrates. Here we provide evidence for transmission of trained immunity across generations to murine progeny that survived a sublethal systemic infection with Candida albicans or a zymosan challenge. The progeny of trained mice exhibited cellular, developmental, transcriptional and epigenetic changes associated with the bone marrow-resident myeloid effector and progenitor cell compartment. Moreover, the progeny of trained mice showed enhanced responsiveness to endotoxin challenge, alongside improved protection against systemic heterologous Escherichia coli and Listeria monocytogenes infections. Sperm DNA of parental male mice intravenously infected with the fungus C. albicans showed DNA methylation differences linked to immune gene loci. These results provide evidence for inheritance of trained immunity in mammals, enhancing protection against infections.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Infecciones por Escherichia coli/inmunología , Escherichia coli/inmunología , Herencia , Inmunidad Innata/genética , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Células Mieloides/inmunología , Animales , Candida albicans/patogenicidad , Candidiasis/genética , Candidiasis/metabolismo , Candidiasis/microbiología , Células Cultivadas , Metilación de ADN , Modelos Animales de Enfermedad , Epigénesis Genética , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Interacciones Huésped-Patógeno , Listeria monocytogenes/patogenicidad , Listeriosis/genética , Listeriosis/metabolismo , Listeriosis/microbiología , Masculino , Ratones Transgénicos , Células Mieloides/metabolismo , Células Mieloides/microbiología , Espermatozoides/inmunología , Espermatozoides/metabolismo , Transcripción Genética
5.
Nature ; 594(7862): 265-270, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34040261

RESUMEN

Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning-a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.


Asunto(s)
Cadena de Bloques , Toma de Decisiones Clínicas/métodos , Confidencialidad , Conjuntos de Datos como Asunto , Aprendizaje Automático , Medicina de Precisión/métodos , COVID-19/diagnóstico , COVID-19/epidemiología , Brotes de Enfermedades , Femenino , Humanos , Leucemia/diagnóstico , Leucemia/patología , Leucocitos/patología , Enfermedades Pulmonares/diagnóstico , Aprendizaje Automático/tendencias , Masculino , Programas Informáticos , Tuberculosis/diagnóstico
6.
Immunity ; 47(6): 1051-1066.e12, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29262348

RESUMEN

Human in vitro generated monocyte-derived dendritic cells (moDCs) and macrophages are used clinically, e.g., to induce immunity against cancer. However, their physiological counterparts, ontogeny, transcriptional regulation, and heterogeneity remains largely unknown, hampering their clinical use. High-dimensional techniques were used to elucidate transcriptional, phenotypic, and functional differences between human in vivo and in vitro generated mononuclear phagocytes to facilitate their full potential in the clinic. We demonstrate that monocytes differentiated by macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulating factor (GM-CSF) resembled in vivo inflammatory macrophages, while moDCs resembled in vivo inflammatory DCs. Moreover, differentiated monocytes presented with profound transcriptomic, phenotypic, and functional differences. Monocytes integrated GM-CSF and IL-4 stimulation combinatorically and temporally, resulting in a mode- and time-dependent differentiation relying on NCOR2. Finally, moDCs are phenotypically heterogeneous and therefore necessitate the use of high-dimensional phenotyping to open new possibilities for better clinical tailoring of these cellular therapies.


Asunto(s)
Células Dendríticas/inmunología , Interleucina-4/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Co-Represor 2 de Receptor Nuclear/inmunología , Transducción de Señal/inmunología , Diferenciación Celular , Linaje de la Célula , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Humanos , Inmunofenotipificación , Interleucina-4/genética , Interleucina-4/farmacología , Activación de Macrófagos , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Monocitos/citología , Monocitos/efectos de los fármacos , Co-Represor 2 de Receptor Nuclear/genética , Cultivo Primario de Células , Factores de Tiempo , Transcripción Genética
7.
EMBO Rep ; 23(8): e54315, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35695071

RESUMEN

The primary cilium constitutes an organelle that orchestrates signal transduction independently from the cell body. Dysregulation of this intricate molecular architecture leads to severe human diseases, commonly referred to as ciliopathies. However, the molecular underpinnings how ciliary signaling orchestrates a specific cellular output remain elusive. By combining spatially resolved optogenetics with RNA sequencing and imaging, we reveal a novel cAMP signalosome that is functionally distinct from the cytoplasm. We identify the genes and pathways targeted by the ciliary cAMP signalosome and shed light on the underlying mechanisms and downstream signaling. We reveal that chronic stimulation of the ciliary cAMP signalosome transforms kidney epithelia from tubules into cysts. Counteracting this chronic cAMP elevation in the cilium by small molecules targeting activation of phosphodiesterase-4 long isoforms inhibits cyst growth. Thereby, we identify a novel concept of how the primary cilium controls cellular functions and maintains tissue integrity in a specific and spatially distinct manner and reveal novel molecular components that might be involved in the development of one of the most common genetic diseases, polycystic kidney disease.


Asunto(s)
Quistes , Enfermedades Renales Poliquísticas , Cilios/metabolismo , Quistes/metabolismo , Expresión Génica , Humanos , Riñón , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo
8.
Immunity ; 40(2): 274-88, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24530056

RESUMEN

Macrophage activation is associated with profound transcriptional reprogramming. Although much progress has been made in the understanding of macrophage activation, polarization, and function, the transcriptional programs regulating these processes remain poorly characterized. We stimulated human macrophages with diverse activation signals, acquiring a data set of 299 macrophage transcriptomes. Analysis of this data set revealed a spectrum of macrophage activation states extending the current M1 versus M2-polarization model. Network analyses identified central transcriptional regulators associated with all macrophage activation complemented by regulators related to stimulus-specific programs. Applying these transcriptional programs to human alveolar macrophages from smokers and patients with chronic obstructive pulmonary disease (COPD) revealed an unexpected loss of inflammatory signatures in COPD patients. Finally, by integrating murine data from the ImmGen project we propose a refined, activation-independent core signature for human and murine macrophages. This resource serves as a framework for future research into regulation of macrophage activation in health and disease.


Asunto(s)
Perfilación de la Expresión Génica , Activación de Macrófagos/inmunología , Modelos Biológicos , Transcriptoma/genética , Animales , Células Cultivadas , Humanos , Ratones
9.
Nucleic Acids Res ; 42(21): 13051-60, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25378309

RESUMEN

Genome-wide assessment of protein-DNA interaction by chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq) is a key technology for studying transcription factor (TF) localization and regulation of gene expression. Signal-to-noise-ratio and signal specificity in ChIP-seq studies depend on many variables, including antibody affinity and specificity. Thus far, efforts to improve antibody reagents for ChIP-seq experiments have focused mainly on generating higher quality antibodies. Here we introduce KOIN (knockout implemented normalization) as a novel strategy to increase signal specificity and reduce noise by using TF knockout mice as a critical control for ChIP-seq data experiments. Additionally, KOIN can identify 'hyper ChIPable regions' as another source of false-positive signals. As the use of the KOIN algorithm reduces false-positive results and thereby prevents misinterpretation of ChIP-seq data, it should be considered as the gold standard for future ChIP-seq analyses, particularly when developing ChIP-assays with novel antibody reagents.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Factores de Transcripción/metabolismo , Algoritmos , Animales , Sitios de Unión , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Motivos de Nucleótidos , Factores de Transcripción/genética
10.
J Vis Exp ; (204)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38465925

RESUMEN

Transcriptomics allows to obtain comprehensive insights into cellular programs and their responses to perturbations. Despite a significant decrease in the costs of library production and sequencing in the last decade, applying these technologies at the scale necessary for drug screening remains prohibitively expensive, obstructing the immense potential of these methods. Our study presents a cost-effective system for transcriptome-based drug screening, combining miniaturized perturbation cultures with mini-bulk transcriptomics. The optimized mini-bulk protocol provides informative biological signals at cost-effective sequencing depth, enabling extensive screening of known drugs and new molecules. Depending on the chosen treatment and incubation time, this protocol will result in sequencing libraries within approximately 2 days. Due to several stopping points within this protocol, the library preparation, as well as the sequencing, can be performed time-independently. Processing simultaneously a high number of samples is possible; measurement of up to 384 samples was tested without loss of data quality. There are also no known limitations to the number of conditions and/or drugs, despite considering variability in optimal drug incubation times.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Evaluación Preclínica de Medicamentos , Biblioteca de Genes , Costos y Análisis de Costo
11.
Cell Rep Methods ; 3(10): 100598, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37776856

RESUMEN

Spatially resolved omics technologies reveal context-dependent cellular regulatory networks in tissues of interest. Beyond transcriptome analysis, information on epigenetic traits and chromatin accessibility can provide further insights on gene regulation in health and disease. Nevertheless, compared to the enormous advancements in spatial transcriptomics technologies, the field of spatial epigenomics is much younger and still underexplored. In this study, we report laser capture microdissection coupled to ATAC-seq (LCM-ATAC-seq) applied to fresh frozen samples for the spatial characterization of chromatin accessibility. We first demonstrate the efficient use of LCM coupled to in situ tagmentation and evaluate its performance as a function of cell number, microdissected areas, and tissue type. Further, we demonstrate its use for the targeted chromatin accessibility analysis of discrete contiguous or scattered cell populations in tissues via single-nuclei capture based on immunostaining for specific cellular markers.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Cromatina/genética , Captura por Microdisección con Láser , Perfilación de la Expresión Génica , Congelación
12.
Cell Rep Med ; 3(6): 100652, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35675822

RESUMEN

Disease recovery dynamics are often difficult to assess, as patients display heterogeneous recovery courses. To model recovery dynamics, exemplified by severe COVID-19, we apply a computational scheme on longitudinally sampled blood transcriptomes, generating recovery states, which we then link to cellular and molecular mechanisms, presenting a framework for studying the kinetics of recovery compared with non-recovery over time and long-term effects of the disease. Specifically, a decrease in mature neutrophils is the strongest cellular effect during recovery, with direct implications on disease outcome. Furthermore, we present strong indications for global regulatory changes in gene programs, decoupled from cell compositional changes, including an early rise in T cell activation and differentiation, resulting in immune rebalancing between interferon and NF-κB activity and restoration of cell homeostasis. Overall, we present a clinically relevant computational framework for modeling disease recovery, paving the way for future studies of the recovery dynamics in other diseases and tissues.


Asunto(s)
COVID-19 , FN-kappa B , Diferenciación Celular , Humanos , Interferones/metabolismo , FN-kappa B/genética , Neutrófilos/metabolismo , Transducción de Señal
13.
Front Immunol ; 13: 917232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979364

RESUMEN

Despite its high prevalence, the cellular and molecular mechanisms of chronic obstructive pulmonary disease (COPD) are far from being understood. Here, we determine disease-related changes in cellular and molecular compositions within the alveolar space and peripheral blood of a cohort of COPD patients and controls. Myeloid cells were the largest cellular compartment in the alveolar space with invading monocytes and proliferating macrophages elevated in COPD. Modeling cell-to-cell communication, signaling pathway usage, and transcription factor binding predicts TGF-ß1 to be a major upstream regulator of transcriptional changes in alveolar macrophages of COPD patients. Functionally, macrophages in COPD showed reduced antigen presentation capacity, accumulation of cholesteryl ester, reduced cellular chemotaxis, and mitochondrial dysfunction, reminiscent of impaired immune activation.


Asunto(s)
Macrófagos Alveolares , Enfermedad Pulmonar Obstructiva Crónica , Quimiotaxis/fisiología , Humanos , Macrófagos/metabolismo , Monocitos/metabolismo
14.
Genome Med ; 13(1): 7, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441124

RESUMEN

BACKGROUND: The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases call for a better characterization and understanding of the changes in the immune system. METHODS: In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify known or novel drug candidates based on finding from data-driven findings. RESULTS: Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients (44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host. CONCLUSIONS: Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for COVID-19 since they capture granulocytes which are major drivers of disease severity.


Asunto(s)
COVID-19/patología , Neutrófilos/metabolismo , Transcriptoma , Antivirales/uso terapéutico , COVID-19/virología , Estudios de Casos y Controles , Regulación hacia Abajo , Reposicionamiento de Medicamentos , Humanos , Neutrófilos/citología , Neutrófilos/inmunología , Fenotipo , Análisis de Componente Principal , ARN/sangre , ARN/química , ARN/metabolismo , Análisis de Secuencia de ARN , Índice de Severidad de la Enfermedad , Regulación hacia Arriba , Tratamiento Farmacológico de COVID-19
15.
Cell Res ; 26(2): 151-70, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26729620

RESUMEN

Differentiation of inflammatory macrophages from monocytes is characterized by an orderly integration of epigenetic and transcriptional regulatory mechanisms guided by lineage-determining transcription factors such as PU.1. Further activation of macrophages leads to a stimulus- or microenvironment-specific signal integration with subsequent transcriptional control established by the action of tissue- or signal-associated transcription factors. Here, we assess four histone modifications during human macrophage activation and integrate this information with the gene expression data from 28 different macrophage activation conditions in combination with GM-CSF. Bioinformatically, for inflammatory macrophages we define a unique network of transcriptional and epigenetic regulators (TRs), which was characterized by accessible promoters independent of the activation signal. In contrast to the general accessibility of promoters of TRs, mRNA expression of central TRs belonging to the TR network displayed stimulus-specific expression patterns, indicating a second level of transcriptional regulation beyond epigenetic chromatin changes. In contrast, stringent integration of epigenetic and transcriptional regulation was observed in networks of TRs established from somatic tissues and tissue macrophages. In these networks, clusters of TRs with permissive histone marks were associated with high gene expression whereas clusters with repressive chromatin marks were associated with absent gene expression. Collectively, these results support that macrophage activation during inflammation in contrast to lineage determination is mainly regulated transcriptionally by a pre-defined TR network.


Asunto(s)
Cromatina/genética , Redes Reguladoras de Genes/genética , Inflamación/genética , Macrófagos/metabolismo , Animales , Epigénesis Genética/genética , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Ratones , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA