Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 583(7814): 96-102, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32581362

RESUMEN

Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.


Asunto(s)
Internacionalidad , Programas Nacionales de Salud , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación Completa del Genoma , Complejo 2-3 Proteico Relacionado con la Actina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Bases de Datos Factuales , Eritrocitos/metabolismo , Factor de Transcripción GATA1/genética , Humanos , Fenotipo , Sitios de Carácter Cuantitativo , Receptores de Trombopoyetina/genética , Medicina Estatal , Reino Unido
2.
Ann Neurol ; 91(4): 506-520, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35150149

RESUMEN

OBJECTIVE: Axonal excitability reflects ion channel function, and it is proposed that this may be a biomarker in painful (vs painless) polyneuropathy. Our objective was to investigate the relationship between axonal excitability parameters and chronic neuropathic pain in deeply phenotyped cohorts with diabetic or chemotherapy-induced distal symmetrical polyneuropathy. METHODS: Two hundred thirty-nine participants with diabetic polyneuropathy were recruited from sites in the UK and Denmark, and 39 participants who developed chemotherapy-induced polyneuropathy were recruited from Denmark. Participants were separated into those with probable or definite neuropathic pain and those without neuropathic pain. Axonal excitability of large myelinated fibers was measured with the threshold tracking technique. The stimulus site was the median nerve, and the recording sites were the index finger (sensory studies) and abductor pollicis brevis muscle (motor studies). RESULTS: Participants with painless and painful polyneuropathy were well matched across clinical variables. Sensory and motor axonal excitability measures, including recovery cycle, threshold electrotonus, strength-duration time constant, and current-threshold relationship, did not show differences between participants with painful and painless diabetic polyneuropathy, and there were only minor changes for chemotherapy-induced polyneuropathy. INTERPRETATION: Axonal excitability did not significantly differ between painful and painless diabetic or chemotherapy-induced polyneuropathy in a multicenter observational study. Threshold tracking assesses the excitability of myelinated axons; the majority of nociceptors are unmyelinated, and although there is some overlap of the "channelome" between these axonal populations, our results suggest that alternative measures such as microneurography are required to understand the relationship between sensory neuron excitability and neuropathic pain. ANN NEUROL 2022;91:506-520.


Asunto(s)
Antineoplásicos , Diabetes Mellitus , Neuropatías Diabéticas , Neuralgia , Polineuropatías , Axones , Humanos , Neuralgia/inducido químicamente
3.
Brain ; 145(10): 3637-3653, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34957475

RESUMEN

Patients with bi-allelic loss of function mutations in the voltage-gated sodium channel Nav1.7 present with congenital insensitivity to pain (CIP), whilst low threshold mechanosensation is reportedly normal. Using psychophysics (n = 6 CIP participants and n = 86 healthy controls) and facial electromyography (n = 3 CIP participants and n = 8 healthy controls), we found that these patients also have abnormalities in the encoding of affective touch, which is mediated by the specialized afferents C-low threshold mechanoreceptors (C-LTMRs). In the mouse, we found that C-LTMRs express high levels of Nav1.7. Genetic loss or selective pharmacological inhibition of Nav1.7 in C-LTMRs resulted in a significant reduction in the total sodium current density, an increased mechanical threshold and reduced sensitivity to non-noxious cooling. The behavioural consequence of loss of Nav1.7 in C-LTMRs in mice was an elevation in the von Frey mechanical threshold and less sensitivity to cooling on a thermal gradient. Nav1.7 is therefore not only essential for normal pain perception but also for normal C-LTMR function, cool sensitivity and affective touch.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Insensibilidad Congénita al Dolor , Animales , Humanos , Ratones , Mecanorreceptores , Canal de Sodio Activado por Voltaje NAV1.7/genética , Insensibilidad Congénita al Dolor/genética , Sodio
4.
Intern Med J ; 53(12): 2224-2230, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37186479

RESUMEN

BACKGROUND: Peripheral nerve biopsy is a valuable final diagnostic tool; however, histopathological results can be non-diagnostic. AIMS: We aim to identify quality improvement measures by evaluating the pre-biopsy assessment and diagnostic yield of specific histopathological diagnosis. METHODS: This was a retrospective study based on 10 years of experience with peripheral nerve biopsies at a single centre. Clinical data were obtained regarding pre-biopsy history, examination, serum and cerebrospinal fluid (CSF) investigations, neurophysiology and peripheral nerve imaging. Based upon a histopathological outcome, patients were grouped into vasculitis, granulomatous and infiltrative (diagnostic) group, or a comparison group of non-specific axonal neuropathy and normal (non-specific/normal) group. RESULTS: From a cohort of 64 patients, 21 (32.8%) were included in the diagnostic group and 30 (46.9%) in the non-specific/normal group. Clinical parameters associated with the diagnostic group were shorter history (mean 10.2 months vs 38.1), stepwise progression (81% vs 20%), neuropathic pain (85.7% vs 56.7%), vasculitic rash (23.8% vs 0%), mononeuritis multiplex (57.1% vs 10%), asymmetry (90.5% vs 60%), raised white cell count (47.6% vs 16.7%), myeloperoxidase antibody (19.1% vs 0%) and abnormal peripheral nerve imaging (33.3% vs 10%). CONCLUSION: Selection of patients undergoing nerve biopsy requires careful consideration of clinical parameters, including peripheral nerve imaging. Several quality improvement measures are proposed to improve yield of clinically actionable information from nerve biopsy.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Vasculitis , Humanos , Estudios Retrospectivos , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/complicaciones , Enfermedades del Sistema Nervioso Periférico/patología , Vasculitis/patología , Anticuerpos Anticitoplasma de Neutrófilos , Biopsia/métodos
5.
Ann Neurol ; 90(4): 683-690, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34370313

RESUMEN

Pain is a under-recognized association of leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-like 2 (CASPR2) antibodies. Of 147 patients with these autoantibodies, pain was experienced by 17 of 33 (52%) with CASPR2- versus 20 of 108 (19%) with LGI1 antibodies (p = 0.0005), and identified as neuropathic in 89% versus 58% of these, respectively. Typically, in both cohorts, normal nerve conduction studies and reduced intraepidermal nerve fiber densities were observed in the sampled patient subsets. In LGI1 antibody patients, pain responded to immunotherapy (p = 0.008), often rapidly, with greater residual patient-rated impairment observed in CASPR2 antibody patients (p = 0.019). Serum CASPR2 antibodies, but not LGI1 antibodies, bound in vitro to unmyelinated human sensory neurons and rodent dorsal root ganglia, suggesting pathophysiological differences that may underlie our clinical observations. ANN NEUROL 2021;90:683-690.


Asunto(s)
Autoanticuerpos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuralgia/inmunología , Neuralgia/metabolismo , Autoanticuerpos/inmunología , Moléculas de Adhesión Celular Neuronal/inmunología , Moléculas de Adhesión Celular Neuronal/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Canales de Potasio con Entrada de Voltaje/inmunología
6.
J Peripher Nerv Syst ; 27(4): 325-329, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962630

RESUMEN

Small fiber neuropathy usually presents with gradual and progressive chronic length-dependent pain. Acute small fiber neuropathy is rarely reported. Three patients with acute onset neuropathic pain after Oxford-AstraZeneca ChAdOx1-S vaccination are described. Two patients were identified at the Oxford University NHS Foundation Trust, Oxford, UK and one patient in Red de Salud UC Christus, Santiago, Chile. All patients underwent a clinical assessment that included a detailed neurological examination, laboratory investigations, nerve conduction studies, thermal threshold testing, and skin biopsy for intra-epidermal nerve fiber density. Patients seen in Oxford underwent MRI of the brain and spinal cord. Cerebrospinal analysis was not performed. Neuropathic symptoms (burning pain, dysaesthesias) developed in the hands and feet within 2 weeks of vaccination. On clinical examination, there was pinprick and thermal hyposensitivity in the area of neuropathic pain. Laboratory investigation, nerve conduction tests, sympathetic skin responses, and MRI showed no relevant abnormalities. Thermal thresholds were abnormal and intra-epidermal nerve fiber density in the lower leg was reduced. In two cases symptoms persist after several months. Three cases of definite acute small fiber neuropathy after Oxford-AstraZeneca ChAdOx1-S vaccination are described. At follow up, neuropathic pain was present in two of the patients.


Asunto(s)
Neuralgia , Neuropatía de Fibras Pequeñas , Humanos , Neuropatía de Fibras Pequeñas/inducido químicamente , Neuropatía de Fibras Pequeñas/diagnóstico , Neuropatía de Fibras Pequeñas/patología , Conducción Nerviosa/fisiología , Neuralgia/inducido químicamente , Neuralgia/patología , Examen Neurológico , Piel/patología , Vacunación/efectos adversos
7.
Brain ; 144(5): 1312-1335, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34128530

RESUMEN

Chronic pain affects one in five of the general population and is the third most important cause of disability-adjusted life-years globally. Unfortunately, treatment remains inadequate due to poor efficacy and tolerability. There has been a failure in translating promising preclinical drug targets into clinic use. This reflects challenges across the whole drug development pathway, from preclinical models to trial design. Nociceptors remain an attractive therapeutic target: their sensitization makes an important contribution to many chronic pain states, they are located outside the blood-brain barrier, and they are relatively specific. The past decade has seen significant advances in the techniques available to study human nociceptors, including: the use of corneal confocal microscopy and biopsy samples to observe nociceptor morphology, the culture of human nociceptors (either from surgical or post-mortem tissue or using human induced pluripotent stem cell derived nociceptors), the application of high throughput technologies such as transcriptomics, the in vitro and in vivo electrophysiological characterization through microneurography, and the correlation with pain percepts provided by quantitative sensory testing. Genome editing in human induced pluripotent stem cell-derived nociceptors enables the interrogation of the causal role of genes in the regulation of nociceptor function. Both human and rodent nociceptors are more heterogeneous at a molecular level than previously appreciated, and while we find that there are broad similarities between human and rodent nociceptors there are also important differences involving ion channel function, expression, and cellular excitability. These technological advances have emphasized the maladaptive plastic changes occurring in human nociceptors following injury that contribute to chronic pain. Studying human nociceptors has revealed new therapeutic targets for the suppression of chronic pain and enhanced repair. Cellular models of human nociceptors have enabled the screening of small molecule and gene therapy approaches on nociceptor function, and in some cases have enabled correlation with clinical outcomes. Undoubtedly, challenges remain. Many of these techniques are difficult to implement at scale, current induced pluripotent stem cell differentiation protocols do not generate the full diversity of nociceptor populations, and we still have a relatively poor understanding of inter-individual variation in nociceptors due to factors such as age, sex, or ethnicity. We hope our ability to directly investigate human nociceptors will not only aid our understanding of the fundamental neurobiology underlying acute and chronic pain but also help bridge the translational gap.


Asunto(s)
Nociceptores/fisiología , Animales , Dolor Crónico/fisiopatología , Humanos , Investigación Biomédica Traslacional
8.
Brain ; 144(6): 1632-1645, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33711103

RESUMEN

Peripheral neuropathy is one of the most common complications of both type 1 and type 2 diabetes. Up to half of patients with diabetes develop neuropathy during the course of their disease, which is accompanied by neuropathic pain in 30-40% of cases. Peripheral nerve injury in diabetes can manifest as progressive distal symmetric polyneuropathy, autonomic neuropathy, radiculo-plexopathies, and mononeuropathies. The most common diabetic neuropathy is distal symmetric polyneuropathy, which we will refer to as DN, with its characteristic glove and stocking like presentation of distal sensory or motor function loss. DN or its painful counterpart, painful DN, are associated with increased mortality and morbidity; thus, early recognition and preventive measures are essential. Nevertheless, it is not easy to diagnose DN or painful DN, particularly in patients with early and mild neuropathy, and there is currently no single established diagnostic gold standard. The most common diagnostic approach in research is a hierarchical system, which combines symptoms, signs, and a series of confirmatory tests. The general lack of long-term prospective studies has limited the evaluation of the sensitivity and specificity of new morphometric and neurophysiological techniques. Thus, the best paradigm for screening DN and painful DN both in research and in clinical practice remains uncertain. Herein, we review the diagnostic challenges from both clinical and research perspectives and their implications for managing patients with DN. There is no established DN treatment, apart from improved glycaemic control, which is more effective in type 1 than in type 2 diabetes, and only symptomatic management is available for painful DN. Currently, less than one-third of patients with painful DN derive sufficient pain relief with existing pharmacotherapies. A more precise and distinct sensory profile from patients with DN and painful DN may help identify responsive patients to one treatment versus another. Detailed sensory profiles will lead to tailored treatment for patient subgroups with painful DN by matching to novel or established DN pathomechanisms and also for improved clinical trials stratification. Large randomized clinical trials are needed to identify the interventions, i.e. pharmacological, physical, cognitive, educational, etc., which lead to the best therapeutic outcomes.


Asunto(s)
Neuropatías Diabéticas/diagnóstico , Neuropatías Diabéticas/terapia , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Neuralgia/diagnóstico , Neuralgia/etiología , Neuralgia/terapia
9.
BMC Med Inform Decis Mak ; 22(1): 144, 2022 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-35644620

RESUMEN

BACKGROUND: To improve the treatment of painful Diabetic Peripheral Neuropathy (DPN) and associated co-morbidities, a better understanding of the pathophysiology and risk factors for painful DPN is required. Using harmonised cohorts (N = 1230) we have built models that classify painful versus painless DPN using quality of life (EQ5D), lifestyle (smoking, alcohol consumption), demographics (age, gender), personality and psychology traits (anxiety, depression, personality traits), biochemical (HbA1c) and clinical variables (BMI, hospital stay and trauma at young age) as predictors. METHODS: The Random Forest, Adaptive Regression Splines and Naive Bayes machine learning models were trained for classifying painful/painless DPN. Their performance was estimated using cross-validation in large cross-sectional cohorts (N = 935) and externally validated in a large population-based cohort (N = 295). Variables were ranked for importance using model specific metrics and marginal effects of predictors were aggregated and assessed at the global level. Model selection was carried out using the Mathews Correlation Coefficient (MCC) and model performance was quantified in the validation set using MCC, the area under the precision/recall curve (AUPRC) and accuracy. RESULTS: Random Forest (MCC = 0.28, AUPRC = 0.76) and Adaptive Regression Splines (MCC = 0.29, AUPRC = 0.77) were the best performing models and showed the smallest reduction in performance between the training and validation dataset. EQ5D index, the 10-item personality dimensions, HbA1c, Depression and Anxiety t-scores, age and Body Mass Index were consistently amongst the most powerful predictors in classifying painful vs painless DPN. CONCLUSIONS: Machine learning models trained on large cross-sectional cohorts were able to accurately classify painful or painless DPN on an independent population-based dataset. Painful DPN is associated with more depression, anxiety and certain personality traits. It is also associated with poorer self-reported quality of life, younger age, poor glucose control and high Body Mass Index (BMI). The models showed good performance in realistic conditions in the presence of missing values and noisy datasets. These models can be used either in the clinical context to assist patient stratification based on the risk of painful DPN or return broad risk categories based on user input. Model's performance and calibration suggest that in both cases they could potentially improve diagnosis and outcomes by changing modifiable factors like BMI and HbA1c control and institute earlier preventive or supportive measures like psychological interventions.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Humanos , Teorema de Bayes , Estudios Transversales , Neuropatías Diabéticas/diagnóstico , Neuropatías Diabéticas/epidemiología , Hemoglobina Glucada , Aprendizaje Automático , Dolor , Calidad de Vida
10.
Diabetologia ; 64(4): 923-931, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33483760

RESUMEN

AIMS/HYPOTHESIS: Distal diabetic sensorimotor polyneuropathy (DSP) is a common complication of diabetes with many patients showing a reduction of intraepidermal nerve fibre density (IENFD) from skin biopsy, a validated and sensitive diagnostic tool for the assessment of DSP. Axonal swelling ratio is a morphological quantification altered in DSP. It is, however, unclear if axonal swellings are related to diabetes or DSP. The aim of this study was to investigate how axonal swellings in cutaneous nerve fibres are related to type 2 diabetes mellitus, DSP and neuropathic pain in a well-defined cohort of patients diagnosed with type 2 diabetes. METHODS: A total of 249 participants, from the Pain in Neuropathy Study (UK) and the International Diabetic Neuropathy Consortium (Denmark), underwent a structured neurological examination, nerve conduction studies, quantitative sensory testing and skin biopsy. The study included four groups: healthy control study participants without diabetes (n = 45); participants with type 2 diabetes without DSP (DSP-; n = 31); and participants with evidence of DSP (DSP+; n = 173); the last were further separated into painless DSP+ (n = 74) and painful DSP+ (n = 99). Axonal swellings were defined as enlargements on epidermal-penetrating fibres exceeding 1.5 µm in diameter. Axonal swelling ratio is calculated by dividing the number of axonal swellings by the number of intraepidermal nerve fibres. RESULTS: Median (IQR) IENFD (fibres/mm) was: 6.7 (5.2-9.2) for healthy control participants; 6.2 (4.4-7.3) for DSP-; 1.3 (0.5-2.2) for painless DSP+; and 0.84 (0.4-1.6) for painful DSP+. Swelling ratios were calculated for all participants and those with IENFD > 1.0 fibre/mm. When only those participants with IENFD > 1.0 fibre/mm were included, the axonal swelling ratio was higher in participants with type 2 diabetes when compared with healthy control participants (p < 0.001); however, there was no difference between DSP- and painless DSP+ participants, or between painless DSP+ and painful DSP+ participants. The axonal swelling ratio correlated weakly with HbA1c (r = 0.16, p = 0.04), but did not correlate with the Toronto Clinical Scoring System (surrogate measure of DSP severity), BMI or type 2 diabetes duration. CONCLUSIONS/INTERPRETATION: In individuals with type 2 diabetes where IENFD is >1.0 fibre/mm, axonal swelling ratio is related to type 2 diabetes but is not related to DSP or painful DSP. Axonal swellings may be an early marker of sensory nerve injury in type 2 diabetes.


Asunto(s)
Axones/patología , Diabetes Mellitus Tipo 2/patología , Neuropatías Diabéticas/patología , Piel/inervación , Anciano , Biopsia , Diagnóstico Precoz , Femenino , Humanos , Masculino , Persona de Mediana Edad , Examen Neurológico , Dimensión del Dolor , Valor Predictivo de las Pruebas , Estudios Retrospectivos
11.
Muscle Nerve ; 61(6): 796-800, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32133655

RESUMEN

INTRODUCTION: Cold allodynia is often seen in the acute phase of oxaliplatin treatment, but the underlying pathophysiology remains unclear. METHODS: Patients scheduled for adjuvant oxaliplatin for colorectal cancer were examined with quantitative sensory testing and nerve excitability tests at baseline and after the second or third oxaliplatin cycle at different skin temperatures. RESULTS: Seven patients were eligible for examination. All patients felt evoked pain and tingling when touching something cold after oxaliplatin infusion. Oxaliplatin decreased motor nerve superexcitability (P < .001), increased relative refractory period (P = .011), and caused neuromyotonia-like after-activity. Cooling exacerbated these changes and prolonged the accommodation half-time. DISCUSSION: The findings suggest that a combined effect of oxaliplatin and cooling facilitates nerve excitability changes and neuromyotonia-like after-activity in peripheral nerve axons. A possible mechanism is the slowing in gating of voltage-dependent fast sodium and slow potassium channels, which results in symptoms of cold allodynia.


Asunto(s)
Antineoplásicos/efectos adversos , Axones/fisiología , Frío/efectos adversos , Hiperalgesia/inducido químicamente , Neuronas Motoras/fisiología , Oxaliplatino/efectos adversos , Anciano , Axones/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Femenino , Estudios de Seguimiento , Humanos , Hiperalgesia/fisiopatología , Masculino , Persona de Mediana Edad , Neuronas Motoras/efectos de los fármacos , Estudios Prospectivos , Resultado del Tratamiento
12.
J Peripher Nerv Syst ; 25(4): 377-387, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32902058

RESUMEN

The aim of this study was to evaluate the presence and characterization of chemotherapy-induced neuropathy (CIPN) and neuropathic pain 5 years after adjuvant chemotherapy with docetaxel or oxaliplatin. Patients from an ongoing prospective study, who had received adjuvant chemotherapy with docetaxel or oxaliplatin in 2011 to 2012 were invited to participate. The patients underwent a thorough examination with interview, neurological examination, questionnaires, assessment tools, nerve conduction studies (NCS), quantitative sensory testing, MScan motor unit number estimation (MUNE), and corneal confocal microscopy (CCM). Patients were divided into no, possible, probable, and confirmed CIPN. Out of the 132 eligible patients, 63 agreed to participate: 28 had received docetaxel and 35 had received oxaliplatin. Forty-one percent had confirmed CIPN, 34% possible or probable CIPN, and 22% did not have CIPN. The CIPN was characterized mainly by sensory nerve fiber loss, with a more pronounced large fiber than small fiber loss but also some motor fiber loss identified on NCS and MUNE. In general, patients had mild neuropathy with relatively low scores on assessment tools and no association with mood and quality of life. CCM was not useful as a diagnostic tool. Of the patients with probable or confirmed CIPN, 30% experienced pain, which was most often mild, but still interfered moderately with daily life in 20% to 25% and was associated with lower quality of life. In conclusion CIPN was confirmed in 41% 5 years after chemotherapy. The neuropathy was generally mild, but in patients with neuropathic pain it was associated with lower quality of life.


Asunto(s)
Antineoplásicos/efectos adversos , Técnicas de Diagnóstico Neurológico/normas , Docetaxel/efectos adversos , Neoplasias/tratamiento farmacológico , Oxaliplatino/efectos adversos , Polineuropatías/inducido químicamente , Polineuropatías/diagnóstico , Índice de Severidad de la Enfermedad , Anciano , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Neuralgia/inducido químicamente , Neuralgia/diagnóstico , Neuralgia/patología , Neuralgia/fisiopatología , Polineuropatías/patología , Polineuropatías/fisiopatología , Estudios Prospectivos , Calidad de Vida
13.
Am J Hum Genet ; 99(3): 607-623, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27588448

RESUMEN

Axonal polyneuropathies are a frequent cause of progressive disability in the elderly. Common etiologies comprise diabetes mellitus, paraproteinaemia, and inflammatory disorders, but often the underlying causes remain elusive. Late-onset axonal Charcot-Marie-Tooth neuropathy (CMT2) is an autosomal-dominantly inherited condition that manifests in the second half of life and is genetically largely unexplained. We assumed age-dependent penetrance of mutations in a so far unknown gene causing late-onset CMT2. We screened 51 index case subjects with late-onset CMT2 for mutations by whole-exome (WES) and Sanger sequencing and subsequently queried WES repositories for further case subjects carrying mutations in the identified candidate gene. We studied nerve pathology and tissue levels and function of the abnormal protein in order to explore consequences of the mutations. Altogether, we observed heterozygous rare loss-of-function and missense mutations in MME encoding the metalloprotease neprilysin in 19 index case subjects diagnosed with axonal polyneuropathies or neurodegenerative conditions involving the peripheral nervous system. MME mutations segregated in an autosomal-dominant fashion with age-related incomplete penetrance and some affected individuals were isolated case subjects. We also found that MME mutations resulted in strongly decreased tissue availability of neprilysin and impaired enzymatic activity. Although neprilysin is known to degrade ß-amyloid, we observed no increased amyloid deposition or increased incidence of dementia in individuals with MME mutations. Detection of MME mutations is expected to increase the diagnostic yield in late-onset polyneuropathies, and it will be tempting to explore whether substances that can elevate neprilysin activity could be a rational option for treatment.


Asunto(s)
Axones/patología , Genes Dominantes/genética , Mutación/genética , Neprilisina/genética , Polineuropatías/genética , Polineuropatías/patología , Tejido Adiposo/metabolismo , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Alelos , Péptidos beta-Amiloides/metabolismo , Animales , Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Análisis Mutacional de ADN , Bases de Datos Genéticas , Demencia/complicaciones , Demencia/genética , Exoma/genética , Heterocigoto , Humanos , Ratones , Persona de Mediana Edad , Mutación Missense/genética , Neprilisina/análisis , Neprilisina/sangre , Neprilisina/deficiencia , Penetrancia , Polineuropatías/complicaciones , Piel/metabolismo , Nervio Sural
14.
Brain ; 141(2): 357-364, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29346515

RESUMEN

The descending pain modulatory system represents one of the oldest and most fundamentally important neurophysiological mechanisms relevant to pain. Extensive work in animals and humans has shown how a functional imbalance between the facilitatory and inhibitory components is linked to exacerbation and maintenance of persistent pain states. Forward translation of these findings into clinical populations is needed to verify the relevance of this imbalance. Diabetic polyneuropathy is one of the most common causes of chronic neuropathic pain; however, the reason why ∼25-30% of patients with diabetes develop pain is not known. The current study used a multimodal clinical neuroimaging approach to interrogate whether the sensory phenotype of painful diabetic polyneuropathy involves altered function of the ventrolateral periaqueductal grey-a key node of the descending pain modulatory system. We found that ventrolateral periaqueductal grey functional connectivity is altered in patients suffering from painful diabetic polyneuropathy; the magnitude of which is correlated to their spontaneous and allodynic pain as well as the magnitude of the cortical response elicited by an experimental tonic heat paradigm. We posit that ventrolateral periaqueductal grey-mediated descending pain modulatory system dysfunction may reflect a brain-based pain facilitation mechanism contributing to painful diabetic polyneuropathy.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiopatología , Neuropatías Diabéticas/complicaciones , Neuropatías Diabéticas/patología , Dolor/complicaciones , Anciano , Teorema de Bayes , Encéfalo/diagnóstico por imagen , Neuropatías Diabéticas/diagnóstico por imagen , Femenino , Humanos , Hiperalgesia/diagnóstico por imagen , Hiperalgesia/fisiopatología , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Examen Neurológico , Oxígeno/sangre , Dolor/diagnóstico por imagen , Dimensión del Dolor , Sustancia Gris Periacueductal/diagnóstico por imagen , Sustancia Gris Periacueductal/fisiopatología
15.
Mol Pharmacol ; 94(5): 1256-1269, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30135145

RESUMEN

Neuropathic pain in patients carrying sodium channel gain-of-function mutations is generally refractory to pharmacotherapy. However, we have shown that pretreatment of cells with clinically achievable concentration of carbamazepine (CBZ; 30 µM) depolarizes the voltage dependence of activation in some NaV1.7 mutations such as S241T, a novel CBZ mode of action of this drug. CBZ reduces the excitability of dorsal root ganglion (DRG) neurons expressing NaV1.7-S241T mutant channels, and individuals carrying the S241T mutation respond to treatment with CBZ. Whether the novel activation-modulating activity of CBZ is specific to NaV1.7, and whether this pharmacogenomic approach can be extended to other sodium channel subtypes, are not known. We report here the novel NaV1.8-S242T mutation, which corresponds to the NaV1.7-S241T mutation, in a patient with neuropathic pain and diabetic peripheral neuropathy. Voltage-clamp recordings demonstrated hyperpolarized and accelerated activation of NaV1.8-S242T. Current-clamp recordings showed that NaV1.8-S242T channels render DRG neurons hyperexcitable. Structural modeling shows that despite a substantial difference in the primary amino acid sequence of NaV1.7 and NaV1.8, the S242 (NaV1.8) and S241 (NaV1.7) residues have similar position and orientation in the domain I S4-S5 linker of the channel. Pretreatment with a clinically achievable concentration of CBZ corrected the voltage dependence of activation of NaV1.8-S242T channels and reduced DRG neuron excitability as predicted from our pharmacogenomic model. These findings extend the novel activation modulation mode of action of CBZ to a second sodium channel subtype, NaV1.8.


Asunto(s)
Carbamazepina/farmacología , Neuropatías Diabéticas/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.8/genética , Dolor/complicaciones , Anciano , Animales , Neuropatías Diabéticas/complicaciones , Neuropatías Diabéticas/fisiopatología , Femenino , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Humanos , Masculino , Potenciales de la Membrana , Ratones , Dolor/fisiopatología , Dimensión del Dolor , Técnicas de Placa-Clamp
16.
Brain ; 140(10): 2557-2569, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28969380

RESUMEN

Non-freezing cold injury develops after sustained exposure to cold temperatures, resulting in tissue cooling but not freezing. This can result in persistent sensory disturbance of the hands and feet including numbness, paraesthesia and chronic pain. Both vascular and neurological aetiologies of this pain have been suggested but remain unproven. We prospectively approached patients referred for clinical assessment of chronic pain following non-freezing cold injury between 12 February 2014 and 30 November 2016. Of 47 patients approached, 42 consented to undergo detailed neurological evaluations including: questionnaires to detail pain location and characteristics, structured neurological examination, quantitative sensory testing, nerve conduction studies and skin biopsy for intraepidermal nerve fibre assessment. Of the 42 study participants, all had experienced non-freezing cold injury while serving in the UK armed services and the majority were of African descent (76.2%) and male (95.2%). Many participants reported multiple exposures to cold. The median time between initial injury and referral was 3.72 years. Pain was principally localized to the hands and the feet, neuropathic in nature and in all study participants associated with cold hypersensitivity. Clinical examination and quantitative sensory testing were consistent with a sensory neuropathy. In all cases, large fibre nerve conduction studies were normal. The intraepidermal nerve fibre density was markedly reduced with 90.5% of participants having a count at or below the 0.05 centile of published normative controls. Using the Neuropathic Pain Special Interest Group of the International Association for the Study of Pain grading for neuropathic pain, 100% had probable and 95.2% definite neuropathic pain. Chronic non-freezing cold injury is a disabling neuropathic pain disorder due to a sensory neuropathy. Why some individuals develop an acute painful sensory neuropathy on sustained cold exposure is not yet known, but individuals of African descent appear vulnerable. Screening tools, such as the DN4 questionnaire, and treatment algorithms for neuropathic pain should now be used in the management of these patients.


Asunto(s)
Lesión por Frío/complicaciones , Neuralgia/etiología , Umbral del Dolor/fisiología , Adulto , Femenino , Humanos , Hiperalgesia/fisiopatología , Masculino , Conducción Nerviosa/fisiología , Neuralgia/psicología , Examen Neurológico , Dimensión del Dolor , Nervios Periféricos/fisiopatología , Calidad de Vida/psicología , Piel/inervación , Piel/patología , Encuestas y Cuestionarios , Adulto Joven
18.
Pract Neurol ; 14(6): 368-79, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24778270

RESUMEN

Small fibre neuropathy (SFN) is characterised by structural injury selectively affecting small diameter sensory and/or autonomic axons. The clinical presentation is dominated by pain. SFN complicates a number of common diseases such as diabetes mellitus and is likely to be increasingly encountered. The diagnosis of SFN is demanding as clinical features can be vague and nerve conduction studies normal. New diagnostic techniques, in particular measurement of intraepidermal nerve fibre density, have significantly improved the diagnostic efficiency of SFN. Management is focused on the treatment of the underlying cause and analgesia, as there is no neuroprotective therapy. A recent and significant advance is the finding that a proportion of cases labelled as idiopathic SFN are in fact associated with gain of function mutations of the voltage-gated sodium channels Nav1.7 and Nav1.8 (encoded by the genes SCN9A and SCN10A, respectively). There is a further group of heritable painful conditions in which gain of function mutations in ion channels alter excitability of sensory neurones but do not cause frank axon degeneration; these include mutations in Nav1.7 (causing erythromelalgia and paroxysmal extreme pain disorder) and TRPA1 (resulting in familial episodic pain disorder). These conditions are exceptionally rare but have provided great insight into the nociceptive system as well as yielding potential analgesic drug targets. In patients with no pre-existing risk factor, the investigation of an underlying cause of SFN should be systematic and appropriate for the patient population. In this review, we focus on how to incorporate recent developments in the diagnosis and pathophysiology of SFN into clinical practice.


Asunto(s)
Canalopatías/diagnóstico , Canalopatías/genética , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/genética , Canalopatías/fisiopatología , Humanos , Enfermedades del Sistema Nervioso Periférico/fisiopatología
19.
Handb Clin Neurol ; 203: 89-109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39174256

RESUMEN

There has been significant progress in our understanding of the molecular basis by which nociceptors transduce and transmit noxious (tissue damaging) stimuli. This is dependent on ion channels, many of which are selectively expressed in nociceptors. Mutations in such proteins have recently been linked to inherited pain disorders in humans. An exemplar is the voltage-gated sodium channel (VGSC) NaV1.7. Loss of function mutations in NaV1.7 result in congenital inability to experience pain while gain-of-function mutations can cause a number of distinct neuropathic pain disorders, including erythromelalgia, paroxysmal extreme pain disorder, and small-fiber neuropathy. Furthermore, variants in the VGSCs 1.8 and 1.9 have also been linked to human pain disorders. There is a correlation between the impact of mutations on the biophysical properties of the ion channel and the severity of the clinical phenotype. Pain channelopathies are not restricted to VGSCs: a mutation in the ligand-gated ion channel TRPA1, (which responds to environmental irritants) causes a familial episodic pain disorder. Ion channel variants have also been linked to more common neuropathic pain disorders such as painful diabetic neuropathy. Not only do these ion channels present targets for novel analgesics, but stratification based on genotype may improve treatment selection of existing analgesics.


Asunto(s)
Canalopatías , Humanos , Canalopatías/genética , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética , Dolor/genética , Neuralgia/genética
20.
Pain ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38968400

RESUMEN

ABSTRACT: It is still unclear how and why some patients develop painful and others painless polyneuropathy. The aim of this study was to identify multiple factors associated with painful polyneuropathies (NeuP). A total of 1181 patients of the multicenter DOLORISK database with painful (probable or definite NeuP) or painless (unlikely NeuP) probable or confirmed neuropathy were investigated clinically, with questionnaires and quantitative sensory testing. Multivariate logistic regression including all variables (demographics, medical history, psychological symptoms, personality items, pain-related worrying, life-style factors, as well as results from clinical examination and quantitative sensory testing) and machine learning was used for the identification of predictors and final risk prediction of painful neuropathy. Multivariate logistic regression demonstrated that severity and idiopathic etiology of neuropathy, presence of chronic pain in family, Patient-Reported Outcomes Measurement Information System Fatigue and Depression T-Score, as well as Pain Catastrophizing Scale total score are the most important features associated with the presence of pain in neuropathy. Machine learning (random forest) identified the same variables. Multivariate logistic regression archived an accuracy above 78%, random forest of 76%; thus, almost 4 out of 5 subjects can be classified correctly. This multicenter analysis shows that pain-related worrying, emotional well-being, and clinical phenotype are factors associated with painful (vs painless) neuropathy. Results may help in the future to identify patients at risk of developing painful neuropathy and identify consequences of pain in longitudinal studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA