Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(42): e2307880120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37816053

RESUMEN

Stigmergy is a generic coordination mechanism widely used by animal societies, in which traces left by individuals in a medium guide and stimulate their subsequent actions. In humans, new forms of stigmergic processes have emerged through the development of online services that extensively use the digital traces left by their users. Here, we combine interactive experiments with faithful data-based modeling to investigate how groups of individuals exploit a simple rating system and the resulting traces in an information search task in competitive or noncompetitive conditions. We find that stigmergic interactions can help groups to collectively find the cells with the highest values in a table of hidden numbers. We show that individuals can be classified into three behavioral profiles that differ in their degree of cooperation. Moreover, the competitive situation prompts individuals to give deceptive ratings and reinforces the weight of private information versus social information in their decisions.


Asunto(s)
Decepción , Procesos de Grupo , Humanos
2.
PLoS Comput Biol ; 19(11): e1011636, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37976299

RESUMEN

Schooling fish heavily rely on visual cues to interact with neighbors and avoid obstacles. The availability of sensory information is influenced by environmental conditions and changes in the physical environment that can alter the sensory environment of the fish, which in turn affects individual and group movements. In this study, we combine experiments and data-driven modeling to investigate the impact of varying levels of light intensity on social interactions and collective behavior in rummy-nose tetra fish. The trajectories of single fish and groups of fish swimming in a tank under different lighting conditions were analyzed to quantify their movements and spatial distribution. Interaction functions between two individuals and the fish interaction with the tank wall were reconstructed and modeled for each light condition. Our results demonstrate that light intensity strongly modulates social interactions between fish and their reactions to obstacles, which then impact collective motion patterns that emerge at the group level.


Asunto(s)
Conducta Social , Interacción Social , Animales , Conducta Animal/fisiología , Modelos Biológicos , Peces/fisiología , Natación/fisiología
3.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33468628

RESUMEN

The termite nest is one of the architectural wonders of the living world, built by the collective action of workers in a colony. Each nest has several characteristic structural motifs that allow for efficient ventilation, cooling, and traversal. We use tomography to quantify the nest architecture of the African termite Apicotermes lamani, consisting of regularly spaced floors connected by scattered linear and helicoidal ramps. To understand how these elaborate structures are built and arranged, we formulate a minimal model for the spatiotemporal evolution of three hydrodynamic fields-mud, termites, and pheromones-linking environmental physics to collective building behavior using simple local rules based on experimental observations. We find that floors and ramps emerge as solutions of the governing equations, with statistics consistent with observations of A. lamani nests. Our study demonstrates how a local self-reinforcing biotectonic scheme is capable of generating an architecture that is simultaneously adaptable and functional, and likely to be relevant for a range of other animal-built structures.


Asunto(s)
Isópteros/fisiología , Comportamiento de Nidificación , Animales , Modelos Teóricos , Tomografía Computarizada por Rayos X
4.
Phys Biol ; 20(5)2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37369222

RESUMEN

Coarse-grained descriptions of collective motion of flocking systems are often derived for the macroscopic or the thermodynamic limit. However, the size of many real flocks falls within 'mesoscopic' scales (10 to 100 individuals), where stochasticity arising from the finite flock sizes is important. Previous studies on mesoscopic models have typically focused on non-spatial models. Developing mesoscopic scale equations, typically in the form of stochastic differential equations, can be challenging even for the simplest of the collective motion models that explicitly account for space. To address this gap, here, we take a novel data-driven equation learning approach to construct the stochastic mesoscopic descriptions of a simple, spatial, self-propelled particle (SPP) model of collective motion. In the spatial model, a focal individual can interact withkrandomly chosen neighbours within an interaction radius. We considerk = 1 (called stochastic pairwise interactions),k = 2 (stochastic ternary interactions), andkequalling all available neighbours within the interaction radius (equivalent to Vicsek-like local averaging). For the stochastic pairwise interaction model, the data-driven mesoscopic equations reveal that the collective order is driven by a multiplicative noise term (hence termed, noise-induced flocking). In contrast, for higher order interactions (k > 1), including Vicsek-like averaging interactions, models yield collective order driven by a combination of deterministic and stochastic forces. We find that the relation between the parameters of the mesoscopic equations describing the dynamics and the population size are sensitive to the density and to the interaction radius, exhibiting deviations from mean-field theoretical expectations. We provide semi-analytic arguments potentially explaining these observed deviations. In summary, our study emphasises the importance of mesoscopic descriptions of flocking systems and demonstrates the potential of the data-driven equation discovery methods for complex systems studies.


Asunto(s)
Movimiento (Física)
5.
PLoS Comput Biol ; 18(3): e1009437, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35235565

RESUMEN

In moving animal groups, social interactions play a key role in the ability of individuals to achieve coordinated motion. However, a large number of environmental and cognitive factors are able to modulate the expression of these interactions and the characteristics of the collective movements that result from these interactions. Here, we use a data-driven fish school model to quantitatively investigate the impact of perceptual and cognitive factors on coordination and collective swimming patterns. The model describes the interactions involved in the coordination of burst-and-coast swimming in groups of Hemigrammus rhodostomus. We perform a comprehensive investigation of the respective impacts of two interactions strategies between fish based on the selection of the most or the two most influential neighbors, of the range and intensity of social interactions, of the intensity of individual random behavioral fluctuations, and of the group size, on the ability of groups of fish to coordinate their movements. We find that fish are able to coordinate their movements when they interact with their most or two most influential neighbors, provided that a minimal level of attraction between fish exist to maintain group cohesion. A minimal level of alignment is also required to allow the formation of schooling and milling. However, increasing the strength of social interactions does not necessarily enhance group cohesion and coordination. When attraction and alignment strengths are too high, or when the heading random fluctuations are too large, schooling and milling can no longer be maintained and the school switches to a swarming phase. Increasing the interaction range between fish has a similar impact on collective dynamics as increasing the strengths of attraction and alignment. Finally, we find that coordination and schooling occurs for a wider range of attraction and alignment strength in small group sizes.


Asunto(s)
Characidae , Conducta Social , Animales , Conducta Animal , Cognición , Modelos Biológicos , Instituciones Académicas , Natación
6.
PLoS Comput Biol ; 18(2): e1009156, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35157694

RESUMEN

Lymphocytes have been described to perform different motility patterns such as Brownian random walks, persistent random walks, and Lévy walks. Depending on the conditions, such as confinement or the distribution of target cells, either Brownian or Lévy walks lead to more efficient interaction with the targets. The diversity of these motility patterns may be explained by an adaptive response to the surrounding extracellular matrix (ECM). Indeed, depending on the ECM composition, lymphocytes either display a floating motility without attaching to the ECM, or sliding and stepping motility with respectively continuous or discontinuous attachment to the ECM, or pivoting behaviour with sustained attachment to the ECM. Moreover, on the long term, lymphocytes either perform a persistent random walk or a Brownian-like movement depending on the ECM composition. How the ECM affects cell motility is still incompletely understood. Here, we integrate essential mechanistic details of the lymphocyte-matrix adhesions and lymphocyte intrinsic cytoskeletal induced cell propulsion into a Cellular Potts model (CPM). We show that the combination of de novo cell-matrix adhesion formation, adhesion growth and shrinkage, adhesion rupture, and feedback of adhesions onto cell propulsion recapitulates multiple lymphocyte behaviours, for different lymphocyte subsets and various substrates. With an increasing attachment area and increased adhesion strength, the cells' speed and persistence decreases. Additionally, the model predicts random walks with short-term persistent but long-term subdiffusive properties resulting in a pivoting type of motility. For small adhesion areas, the spatial distribution of adhesions emerges as a key factor influencing cell motility. Small adhesions at the front allow for more persistent motility than larger clusters at the back, despite a similar total adhesion area. In conclusion, we present an integrated framework to simulate the effects of ECM proteins on cell-matrix adhesion dynamics. The model reveals a sufficient set of principles explaining the plasticity of lymphocyte motility.


Asunto(s)
Uniones Célula-Matriz , Matriz Extracelular , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Uniones Célula-Matriz/fisiología , Simulación por Computador , Matriz Extracelular/metabolismo
7.
PLoS Comput Biol ; 16(3): e1007194, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32176680

RESUMEN

Coordinated motion and collective decision-making in fish schools result from complex interactions by which individuals integrate information about the behavior of their neighbors. However, little is known about how individuals integrate this information to take decisions and control their motion. Here, we combine experiments with computational and robotic approaches to investigate the impact of different strategies for a fish to interact with its neighbors on collective swimming in groups of rummy-nose tetra (Hemigrammus rhodostomus). By means of a data-based agent model describing the interactions between pairs of H. rhodostomus (Calovi et al., 2018), we show that the simple addition of the pairwise interactions with two neighbors quantitatively reproduces the collective behavior observed in groups of five fish. Increasing the number of interacting neighbors does not significantly improve the simulation results. Remarkably, and even without confinement, we find that groups remain cohesive and polarized when each agent interacts with only one of its neighbors: the one that has the strongest contribution to the heading variation of the focal agent, dubbed as the "most influential neighbor". However, group cohesion is lost when each agent only interacts with its nearest neighbor. We then investigate by means of a robotic platform the collective motion in groups of five robots. Our platform combines the implementation of the fish behavioral model and a control system to deal with real-world physical constraints. A better agreement with experimental results for fish is obtained for groups of robots only interacting with their most influential neighbor, than for robots interacting with one or even two nearest neighbors. Finally, we discuss the biological and cognitive relevance of the notion of "most influential neighbors". Overall, our results suggest that fish have to acquire only a minimal amount of information about their environment to coordinate their movements when swimming in groups.


Asunto(s)
Conducta Animal/fisiología , Biología Computacional/métodos , Toma de Decisiones Conjunta , Animales , Characidae/metabolismo , Characidae/fisiología , Peces/metabolismo , Peces/fisiología , Relaciones Interpersonales , Modelos Biológicos , Movimiento , Robótica , Conducta Social , Programas Informáticos , Natación
8.
Proc Natl Acad Sci U S A ; 114(47): 12620-12625, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29118142

RESUMEN

In our digital and connected societies, the development of social networks, online shopping, and reputation systems raises the questions of how individuals use social information and how it affects their decisions. We report experiments performed in France and Japan, in which subjects could update their estimates after having received information from other subjects. We measure and model the impact of this social information at individual and collective scales. We observe and justify that, when individuals have little prior knowledge about a quantity, the distribution of the logarithm of their estimates is close to a Cauchy distribution. We find that social influence helps the group improve its properly defined collective accuracy. We quantify the improvement of the group estimation when additional controlled and reliable information is provided, unbeknownst to the subjects. We show that subjects' sensitivity to social influence permits us to define five robust behavioral traits and increases with the difference between personal and group estimates. We then use our data to build and calibrate a model of collective estimation to analyze the impact on the group performance of the quantity and quality of information received by individuals. The model quantitatively reproduces the distributions of estimates and the improvement of collective performance and accuracy observed in our experiments. Finally, our model predicts that providing a moderate amount of incorrect information to individuals can counterbalance the human cognitive bias to systematically underestimate quantities and thereby improve collective performance.


Asunto(s)
Toma de Decisiones , Procesos de Grupo , Modelos Estadísticos , Red Social , Francia , Humanos , Japón , Conocimiento
9.
PLoS Comput Biol ; 14(1): e1005933, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29324853

RESUMEN

The development of tracking methods for automatically quantifying individual behavior and social interactions in animal groups has open up new perspectives for building quantitative and predictive models of collective behavior. In this work, we combine extensive data analyses with a modeling approach to measure, disentangle, and reconstruct the actual functional form of interactions involved in the coordination of swimming in Rummy-nose tetra (Hemigrammus rhodostomus). This species of fish performs burst-and-coast swimming behavior that consists of sudden heading changes combined with brief accelerations followed by quasi-passive, straight decelerations. We quantify the spontaneous stochastic behavior of a fish and the interactions that govern wall avoidance and the reaction to a neighboring fish, the latter by exploiting general symmetry constraints for the interactions. In contrast with previous experimental works, we find that both attraction and alignment behaviors control the reaction of fish to a neighbor. We then exploit these results to build a model of spontaneous burst-and-coast swimming and interactions of fish, with all parameters being estimated or directly measured from experiments. This model quantitatively reproduces the key features of the motion and spatial distributions observed in experiments with a single fish and with two fish. This demonstrates the power of our method that exploits large amounts of data for disentangling and fully characterizing the interactions that govern collective behaviors in animals groups.


Asunto(s)
Conducta Animal , Peces/fisiología , Natación , Animales , Anisotropía , Tamaño Corporal , Biología Computacional , Relaciones Interpersonales , Modelos Biológicos , Probabilidad , Procesamiento de Señales Asistido por Computador , Conducta Social , Programas Informáticos , Procesos Estocásticos , Temperatura
10.
Proc Natl Acad Sci U S A ; 113(5): 1303-8, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26787857

RESUMEN

The nests of social insects are not only impressive because of their sheer complexity but also because they are built from individuals whose work is not centrally coordinated. A key question is how groups of insects coordinate their building actions. Here, we use a combination of experimental and modeling approaches to investigate nest construction in the ant Lasius niger. We quantify the construction dynamics and the 3D structures built by ants. Then, we characterize individual behaviors and the interactions of ants with the structures they build. We show that two main interactions are involved in the coordination of building actions: (i) a stigmergic-based interaction that controls the amplification of depositions at some locations and is attributable to a pheromone added by ants to the building material; and (ii) a template-based interaction in which ants use their body size as a cue to control the height at which they start to build a roof from existing pillars. We then develop a 3D stochastic model based on these individual behaviors to analyze the effect of pheromone presence and strength on construction dynamics. We show that the model can quantitatively reproduce key features of construction dynamics, including a large-scale pattern of regularly spaced pillars, the formation and merging of caps over the pillars, and the remodeling of built structures. Finally, our model suggests that the lifetime of the pheromone is a highly influential parameter that controls the growth and form of nest architecture.


Asunto(s)
Hormigas/fisiología , Animales , Modelos Teóricos
11.
Proc Biol Sci ; 285(1877)2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29695447

RESUMEN

Moving animal groups such as schools of fishes or flocks of birds often undergo sudden collective changes of their travelling direction as a consequence of stochastic fluctuations in heading of the individuals. However, the mechanisms by which these behavioural fluctuations arise at the individual level and propagate within a group are still unclear. In this study, we combine an experimental and theoretical approach to investigate spontaneous collective U-turns in groups of rummy-nose tetra (Hemigrammus rhodostomus) swimming in a ring-shaped tank. U-turns imply that fish switch their heading between the clockwise and anticlockwise direction. We reconstruct trajectories of individuals moving alone and in groups of different sizes. We show that the group decreases its swimming speed before a collective U-turn. This is in agreement with previous theoretical predictions showing that speed decrease facilitates an amplification of fluctuations in heading in the group, which can trigger U-turns. These collective U-turns are mostly initiated by individuals at the front of the group. Once an individual has initiated a U-turn, the new direction propagates through the group from front to back without amplification or dampening, resembling the dynamics of falling dominoes. The mean time between collective U-turns sharply increases as the size of the group increases. We develop an Ising spin model integrating anisotropic and asymmetrical interactions between fish and their tendency to follow the majority of their neighbours nonlinearly (social conformity). The model quantitatively reproduces key features of the dynamics and the frequency of collective U-turns observed in experiments.


Asunto(s)
Conducta Animal , Characidae/fisiología , Conducta Social , Natación , Animales , Difusión de la Información , Modelos Biológicos , Conformidad Social
12.
PLoS Comput Biol ; 13(11): e1005822, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29161269

RESUMEN

Schools of fish and flocks of birds can move together in synchrony and decide on new directions of movement in a seamless way. This is possible because group members constantly share directional information with their neighbors. Although detecting the directionality of other group members is known to be important to maintain cohesion, it is not clear how many neighbors each individual can simultaneously track and pay attention to, and what the spatial distribution of these influential neighbors is. Here, we address these questions on shoals of Hemigrammus rhodostomus, a species of fish exhibiting strong schooling behavior. We adopt a data-driven analysis technique based on the study of short-term directional correlations to identify which neighbors have the strongest influence over the participation of an individual in a collective U-turn event. We find that fish mainly react to one or two neighbors at a time. Moreover, we find no correlation between the distance rank of a neighbor and its likelihood to be influential. We interpret our results in terms of fish allocating sequential and selective attention to their neighbors.


Asunto(s)
Conducta Animal , Aves/fisiología , Peces/fisiología , Algoritmos , Animales , Biología Computacional , Simulación por Computador , Modelos Biológicos , Movimiento , Programas Informáticos , Natación , Temperatura
13.
Proc Natl Acad Sci U S A ; 112(41): 12729-34, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26417082

RESUMEN

Among the many fascinating examples of collective behavior exhibited by animal groups, some species are known to alternate slow group dispersion in space with rapid aggregation phenomena induced by a sudden behavioral shift at the individual level. We study this phenomenon quantitatively in large groups of grazing Merino sheep under controlled experimental conditions. Our analysis reveals strongly intermittent collective dynamics consisting of fast, avalanche-like regrouping events distributed on all experimentally accessible scales. As a proof of principle, we introduce an agent-based model with individual behavioral shifts, which we show to account faithfully for all collective properties observed. This offers, in turn, an insight on the individual stimulus/response functions that can generate such intermittent behavior. In particular, the intensity of sheep allelomimetic behavior plays a key role in the group's ability to increase the per capita grazing surface while minimizing the time needed to regroup into a tightly packed configuration. We conclude that the emergent behavior reported probably arises from the necessity to balance two conflicting imperatives: (i) the exploration of foraging space by individuals and (ii) the protection from predators offered by being part of large, cohesive groups. We discuss our results in the context of the current debate about criticality in biology.


Asunto(s)
Conducta Animal/fisiología , Ovinos/fisiología , Conducta Social , Animales
14.
J Exp Biol ; 220(Pt 1): 83-91, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28057831

RESUMEN

The nests built by social insects are among the most complex structures produced by animal groups. They reveal the social behaviour of a colony and as such they potentially allow comparative studies. However, for a long time, research on nest architecture was hindered by the lack of technical tools allowing the visualisation of their complex 3D structures and the quantification of their properties. Several techniques, developed over the years, now make it possible to study the organisation of these nests and how they are built. Here, we review present knowledge of the mechanisms of nest construction, and how nest structure affects the behaviour of individual insects and the organisation of activities within a colony.


Asunto(s)
Hormigas/fisiología , Isópteros/fisiología , Comportamiento de Nidificación , Silicatos de Aluminio/química , Comunicación Animal , Animales , Arcilla , Feromonas/análisis , Feromonas/metabolismo , Conducta Social
15.
Bull Math Biol ; 78(5): 879-915, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27125656

RESUMEN

The organizations of insect societies, such as division of labor, task allocation, collective regulation, mass action responses, have been considered as main reasons for the ecological success. In this article, we propose and study a general modeling framework that includes the following three features: (a) the average internal response threshold for each task (the internal factor); (b) social network communications that could lead to task switching (the environmental factor); and (c) dynamical changes of task demands (the external factor). Since workers in many social insect species exhibit age polyethism, we also extend our model to incorporate age polyethism in which worker task preferences change with age. We apply our general modeling framework to the cases of two task groups: the inside colony task versus the outside colony task. Our analytical study of the models provides important insights and predictions on the effects of colony size, social communication, and age-related task preferences on task allocation and division of labor in the adaptive dynamical environment. Our study implies that the smaller size colony invests its resource for the colony growth and allocates more workers in the risky tasks such as foraging while the larger colony shifts more workers to perform the safer tasks inside the colony. Social interactions among different task groups play an important role in shaping task allocation depending on the relative cost and demands of the tasks.


Asunto(s)
Conducta Animal , Insectos/fisiología , Animales , Simulación por Computador , Conceptos Matemáticos , Modelos Biológicos , Dinámica Poblacional , Conducta Social
16.
PLoS Comput Biol ; 9(3): e1002903, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23555202

RESUMEN

Interactions between individuals and the structure of their environment play a crucial role in shaping self-organized collective behaviors. Recent studies have shown that ants crossing asymmetrical bifurcations in a network of galleries tend to follow the branch that deviates the least from their incoming direction. At the collective level, the combination of this tendency and the pheromone-based recruitment results in a greater likelihood of selecting the shortest path between the colony's nest and a food source in a network containing asymmetrical bifurcations. It was not clear however what the origin of this behavioral bias is. Here we propose that it results from a simple interaction between the behavior of the ants and the geometry of the network, and that it does not require the ability to measure the angle of the bifurcation. We tested this hypothesis using groups of ant-like robots whose perceptual and cognitive abilities can be fully specified. We programmed them only to lay down and follow light trails, avoid obstacles and move according to a correlated random walk, but not to use more sophisticated orientation methods. We recorded the behavior of the robots in networks of galleries presenting either only symmetrical bifurcations or a combination of symmetrical and asymmetrical bifurcations. Individual robots displayed the same pattern of branch choice as individual ants when crossing a bifurcation, suggesting that ants do not actually measure the geometry of the bifurcations when travelling along a pheromone trail. Finally at the collective level, the group of robots was more likely to select one of the possible shorter paths between two designated areas when moving in an asymmetrical network, as observed in ants. This study reveals the importance of the shape of trail networks for foraging in ants and emphasizes the underestimated role of the geometrical properties of transportation networks in general.


Asunto(s)
Comunicación Animal , Hormigas/fisiología , Biología Computacional/instrumentación , Biología Computacional/métodos , Modelos Biológicos , Robótica/instrumentación , Animales , Conducta Alimentaria , Feromonas
17.
Proc Natl Acad Sci U S A ; 108(17): 6884-8, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21502518

RESUMEN

With the increasing size and frequency of mass events, the study of crowd disasters and the simulation of pedestrian flows have become important research areas. However, even successful modeling approaches such as those inspired by Newtonian force models are still not fully consistent with empirical observations and are sometimes hard to calibrate. Here, a cognitive science approach is proposed, which is based on behavioral heuristics. We suggest that, guided by visual information, namely the distance of obstructions in candidate lines of sight, pedestrians apply two simple cognitive procedures to adapt their walking speeds and directions. Although simpler than previous approaches, this model predicts individual trajectories and collective patterns of motion in good quantitative agreement with a large variety of empirical and experimental data. This model predicts the emergence of self-organization phenomena, such as the spontaneous formation of unidirectional lanes or stop-and-go waves. Moreover, the combination of pedestrian heuristics with body collisions generates crowd turbulence at extreme densities--a phenomenon that has been observed during recent crowd disasters. By proposing an integrated treatment of simultaneous interactions between multiple individuals, our approach overcomes limitations of current physics-inspired pair interaction models. Understanding crowd dynamics through cognitive heuristics is therefore not only crucial for a better preparation of safe mass events. It also clears the way for a more realistic modeling of collective social behaviors, in particular of human crowds and biological swarms. Furthermore, our behavioral heuristics may serve to improve the navigation of autonomous robots.


Asunto(s)
Aglomeración , Desastres , Modelos Teóricos , Humanos , Conducta Social
18.
Bioinspir Biomim ; 19(4)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38866031

RESUMEN

Biohybrid systems in which robotic lures interact with animals have become compelling tools for probing and identifying the mechanisms underlying collective animal behavior. One key challenge lies in the transfer of social interaction models from simulations to reality, using robotics to validate the modeling hypotheses. This challenge arises in bridging what we term the 'biomimicry gap', which is caused by imperfect robotic replicas, communication cues and physics constraints not incorporated in the simulations, that may elicit unrealistic behavioral responses in animals. In this work, we used a biomimetic lure of a rummy-nose tetra fish (Hemigrammus rhodostomus) and a neural network (NN) model for generating biomimetic social interactions. Through experiments with a biohybrid pair comprising a fish and the robotic lure, a pair of real fish, and simulations of pairs of fish, we demonstrate that our biohybrid system generates social interactions mirroring those of genuine fish pairs. Our analyses highlight that: 1) the lure and NN maintain minimal deviation in real-world interactions compared to simulations and fish-only experiments, 2) our NN controls the robot efficiently in real-time, and 3) a comprehensive validation is crucial to bridge the biomimicry gap, ensuring realistic biohybrid systems.


Asunto(s)
Biomimética , Robótica , Robótica/instrumentación , Robótica/métodos , Animales , Biomimética/métodos , Simulación por Computador , Conducta Social , Redes Neurales de la Computación , Peces/fisiología , Conducta Animal/fisiología , Modelos Biológicos
19.
J R Soc Interface ; 21(212): 20230630, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38442859

RESUMEN

Modern computing has enhanced our understanding of how social interactions shape collective behaviour in animal societies. Although analytical models dominate in studying collective behaviour, this study introduces a deep learning model to assess social interactions in the fish species Hemigrammus rhodostomus. We compare the results of our deep learning approach with experiments and with the results of a state-of-the-art analytical model. To that end, we propose a systematic methodology to assess the faithfulness of a collective motion model, exploiting a set of stringent individual and collective spatio-temporal observables. We demonstrate that machine learning (ML) models of social interactions can directly compete with their analytical counterparts in reproducing subtle experimental observables. Moreover, this work emphasizes the need for consistent validation across different timescales, and identifies key design aspects that enable our deep learning approach to capture both short- and long-term dynamics. We also show that our approach can be extended to larger groups without any retraining, and to other fish species, while retaining the same architecture of the deep learning network. Finally, we discuss the added value of ML in the context of the study of collective motion in animal groups and its potential as a complementary approach to analytical models.


Asunto(s)
Aprendizaje Profundo , Animales , Conducta de Masa , Peces , Aprendizaje Automático , Movimiento (Física)
20.
PLoS Comput Biol ; 8(9): e1002678, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23028277

RESUMEN

Collective motion phenomena in large groups of social organisms have long fascinated the observer, especially in cases, such as bird flocks or fish schools, where large-scale highly coordinated actions emerge in the absence of obvious leaders. However, the mechanisms involved in this self-organized behavior are still poorly understood, because the individual-level interactions underlying them remain elusive. Here, we demonstrate the power of a bottom-up methodology to build models for animal group motion from data gathered at the individual scale. Using video tracks of fish shoal in a tank, we show how a careful, incremental analysis at the local scale allows for the determination of the stimulus/response function governing an individual's moving decisions. We find in particular that both positional and orientational effects are present, act upon the fish turning speed, and depend on the swimming speed, yielding a novel schooling model whose parameters are all estimated from data. Our approach also leads to identify a density-dependent effect that results in a behavioral change for the largest groups considered. This suggests that, in confined environment, the behavioral state of fish and their reaction patterns change with group size. We debate the applicability, beyond the particular case studied here, of this novel framework for deciphering interactions in moving animal groups.


Asunto(s)
Conducta Animal/fisiología , Toma de Decisiones/fisiología , Peces/fisiología , Modelos Biológicos , Orientación/fisiología , Conducta Espacial/fisiología , Natación/fisiología , Animales , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA