Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 161(5): 1101-1111, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25981665

RESUMEN

G-protein-coupled receptors (GPCRs) transduce signals from the extracellular environment to intracellular proteins. To gain structural insight into the regulation of receptor cytoplasmic conformations by extracellular ligands during signaling, we examine the structural dynamics of the cytoplasmic domain of the ß2-adrenergic receptor (ß2AR) using (19)F-fluorine NMR and double electron-electron resonance spectroscopy. These studies show that unliganded and inverse-agonist-bound ß2AR exists predominantly in two inactive conformations that exchange within hundreds of microseconds. Although agonists shift the equilibrium toward a conformation capable of engaging cytoplasmic G proteins, they do so incompletely, resulting in increased conformational heterogeneity and the coexistence of inactive, intermediate, and active states. Complete transition to the active conformation requires subsequent interaction with a G protein or an intracellular G protein mimetic. These studies demonstrate a loose allosteric coupling of the agonist-binding site and G-protein-coupling interface that may generally be responsible for the complex signaling behavior observed for many GPCRs.


Asunto(s)
Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal , Agonistas Adrenérgicos beta/farmacología , Secuencia de Aminoácidos , Benzoxazinas/farmacología , Humanos , Isoproterenol/metabolismo , Isoproterenol/farmacología , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Receptores Adrenérgicos beta 2/química
2.
Cell ; 152(3): 532-42, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374348

RESUMEN

G-protein-coupled receptors (GPCRs) can modulate diverse signaling pathways, often in a ligand-specific manner. The full range of functionally relevant GPCR conformations is poorly understood. Here, we use NMR spectroscopy to characterize the conformational dynamics of the transmembrane core of the ß(2)-adrenergic receptor (ß(2)AR), a prototypical GPCR. We labeled ß(2)AR with (13)CH(3)ε-methionine and obtained HSQC spectra of unliganded receptor as well as receptor bound to an inverse agonist, an agonist, and a G-protein-mimetic nanobody. These studies provide evidence for conformational states not observed in crystal structures, as well as substantial conformational heterogeneity in agonist- and inverse-agonist-bound preparations. They also show that for ß(2)AR, unlike rhodopsin, an agonist alone does not stabilize a fully active conformation, suggesting that the conformational link between the agonist-binding pocket and the G-protein-coupling surface is not rigid. The observed heterogeneity may be important for ß(2)AR's ability to engage multiple signaling and regulatory proteins.


Asunto(s)
Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Conformación Proteica , Transducción de Señal , Termodinámica
3.
Nature ; 485(7398): 400-4, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22596164

RESUMEN

The opioid receptor family comprises three members, the µ-, δ- and κ-opioid receptors, which respond to classical opioid alkaloids such as morphine and heroin as well as to endogenous peptide ligands like endorphins. They belong to the G-protein-coupled receptor (GPCR) superfamily, and are excellent therapeutic targets for pain control. The δ-opioid receptor (δ-OR) has a role in analgesia, as well as in other neurological functions that remain poorly understood. The structures of the µ-OR and κ-OR have recently been solved. Here we report the crystal structure of the mouse δ-OR, bound to the subtype-selective antagonist naltrindole. Together with the structures of the µ-OR and κ-OR, the δ-OR structure provides insights into conserved elements of opioid ligand recognition while also revealing structural features associated with ligand-subtype selectivity. The binding pocket of opioid receptors can be divided into two distinct regions. Whereas the lower part of this pocket is highly conserved among opioid receptors, the upper part contains divergent residues that confer subtype selectivity. This provides a structural explanation and validation for the 'message-address' model of opioid receptor pharmacology, in which distinct 'message' (efficacy) and 'address' (selectivity) determinants are contained within a single ligand. Comparison of the address region of the δ-OR with other GPCRs reveals that this structural organization may be a more general phenomenon, extending to other GPCR families as well.


Asunto(s)
Naltrexona/análogos & derivados , Receptores Opioides delta/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Naltrexona/química , Naltrexona/metabolismo , Naltrexona/farmacología , Estructura Terciaria de Proteína , Receptores Opioides delta/antagonistas & inhibidores , Receptores Opioides delta/metabolismo , Reproducibilidad de los Resultados , Relación Estructura-Actividad , Especificidad por Sustrato
4.
Nature ; 485(7398): 321-6, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22437502

RESUMEN

Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled µ-opioid receptor (µ-OR) in the central nervous system. Here we describe the 2.8 Å crystal structure of the mouse µ-OR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most G-protein-coupled receptors published so far, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the µ-OR crystallizes as a two-fold symmetrical dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.


Asunto(s)
Morfinanos/química , Receptores Opioides mu/antagonistas & inhibidores , Receptores Opioides mu/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Ligandos , Ratones , Modelos Moleculares , Morfinanos/metabolismo , Morfinanos/farmacología , Conformación Proteica , Multimerización de Proteína , Receptores Opioides mu/metabolismo , Solventes/química
5.
Nature ; 477(7366): 549-55, 2011 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-21772288

RESUMEN

G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The ß(2) adrenergic receptor (ß(2)AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric ß(2)AR and nucleotide-free Gs heterotrimer. The principal interactions between the ß(2)AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the ß(2)AR include a 14 Å outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animales , Dominio Catalítico , Bovinos , Cristalización , Cristalografía por Rayos X , Activación Enzimática , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Ratas
6.
Nature ; 469(7329): 175-80, 2011 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-21228869

RESUMEN

G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human ß(2) adrenergic receptor (ß(2)AR) that exhibits G protein-like behaviour, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive ß(2)AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11 Å outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Fragmentos de Inmunoglobulinas/química , Fragmentos de Inmunoglobulinas/inmunología , Nanoestructuras/química , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/inmunología , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animales , Sitios de Unión , Camélidos del Nuevo Mundo , Cristalografía por Rayos X , Agonismo Inverso de Drogas , Humanos , Fragmentos de Inmunoglobulinas/metabolismo , Fragmentos de Inmunoglobulinas/farmacología , Ligandos , Modelos Moleculares , Movimiento/efectos de los fármacos , Opsinas/agonistas , Opsinas/química , Opsinas/metabolismo , Propanolaminas/química , Propanolaminas/metabolismo , Propanolaminas/farmacología , Conformación Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteínas Virales/química , Proteínas Virales/metabolismo
7.
Nature ; 463(7277): 108-12, 2010 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20054398

RESUMEN

G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the beta(2) adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.


Asunto(s)
Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2 , Antagonistas de Receptores Adrenérgicos beta 2 , Regulación Alostérica/efectos de los fármacos , Sitios de Unión , Cristalografía por Rayos X , Agonismo Inverso de Drogas , Etanolaminas/farmacología , Fumarato de Formoterol , Humanos , Ligandos , Lisina/análogos & derivados , Lisina/metabolismo , Metilación , Modelos Moleculares , Proteínas Mutantes , Resonancia Magnética Nuclear Biomolecular , Propanolaminas/metabolismo , Propanolaminas/farmacología , Estructura Terciaria de Proteína/efectos de los fármacos , Electricidad Estática , Especificidad por Sustrato
8.
Nature ; 450(7168): 383-7, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17952055

RESUMEN

Structural analysis of G-protein-coupled receptors (GPCRs) for hormones and neurotransmitters has been hindered by their low natural abundance, inherent structural flexibility, and instability in detergent solutions. Here we report a structure of the human beta2 adrenoceptor (beta2AR), which was crystallized in a lipid environment when bound to an inverse agonist and in complex with a Fab that binds to the third intracellular loop. Diffraction data were obtained by high-brilliance microcrystallography and the structure determined at 3.4 A/3.7 A resolution. The cytoplasmic ends of the beta2AR transmembrane segments and the connecting loops are well resolved, whereas the extracellular regions of the beta2AR are not seen. The beta2AR structure differs from rhodopsin in having weaker interactions between the cytoplasmic ends of transmembrane (TM)3 and TM6, involving the conserved E/DRY sequences. These differences may be responsible for the relatively high basal activity and structural instability of the beta2AR, and contribute to the challenges in obtaining diffraction-quality crystals of non-rhodopsin GPCRs.


Asunto(s)
Receptores Adrenérgicos beta 2/química , Antagonistas de Receptores Adrenérgicos beta 2 , Animales , Línea Celular , Cristalización , Cristalografía por Rayos X , Agonismo Inverso de Drogas , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/metabolismo , Leucina/metabolismo , Lípidos/química , Modelos Moleculares , Conformación Proteica , Receptores Adrenérgicos beta 2/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Spodoptera
9.
Science ; 318(5854): 1266-73, 2007 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-17962519

RESUMEN

The beta2-adrenergic receptor (beta2AR) is a well-studied prototype for heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the beta2AR and to facilitate its crystallization, we engineered a beta2AR fusion protein in which T4 lysozyme (T4L) replaces most of the third intracellular loop of the GPCR ("beta2AR-T4L") and showed that this protein retains near-native pharmacologic properties. Analysis of adrenergic receptor ligand-binding mutants within the context of the reported high-resolution structure of beta2AR-T4L provides insights into inverse-agonist binding and the structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting a conformational pathway from the ligand-binding pocket to regions that interact with G proteins.


Asunto(s)
Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas Adrenérgicos beta/química , Agonistas Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/metabolismo , Secuencia de Aminoácidos , Bacteriófago T4/enzimología , Sitios de Unión , Línea Celular , Membrana Celular/química , Membrana Celular/metabolismo , Cristalización , Cristalografía por Rayos X , Agonismo Inverso de Drogas , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/metabolismo , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Muramidasa/química , Muramidasa/metabolismo , Propanolaminas/química , Propanolaminas/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
10.
Science ; 318(5854): 1258-65, 2007 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-17962520

RESUMEN

Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein-coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair of closely spaced disulfide bridges and a short helical segment within the loop. Cholesterol, a necessary component for crystallization, mediates an intriguing parallel association of receptor molecules in the crystal lattice. Although the location of carazolol in the beta2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family.


Asunto(s)
Receptores Adrenérgicos beta 2/química , Bacteriófago T4/enzimología , Sitios de Unión , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/química , Colesterol/metabolismo , Cristalización , Cristalografía por Rayos X , Agonismo Inverso de Drogas , Humanos , Ligandos , Modelos Moleculares , Muramidasa/química , Muramidasa/metabolismo , Propanolaminas/química , Propanolaminas/metabolismo , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Receptores Adrenérgicos beta 2/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Electricidad Estática
11.
J Biol Chem ; 280(23): 22165-71, 2005 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-15817484

RESUMEN

The beta(2) adrenergic receptor (beta(2)AR) is a prototypical family A G protein-coupled receptor (GPCR) and an excellent model system for studying the mechanism of GPCR activation. The beta(2)AR agonist binding site is well characterized, and there is a wealth of structurally related ligands with functionally diverse properties. In the present study, we use catechol (1,2-benzenediol, a structural component of catecholamine agonists) as a molecular probe to identify mechanistic differences between beta(2)AR activation by catecholamine agonists, such as isoproterenol, and by the structurally related non-catechol partial agonist salbutamol. Using biophysical and pharmacologic approaches, we show that the aromatic ring of salbutamol binds to a different site on the beta(2)AR than the aromatic ring of catecholamines. This difference is important in receptor activation as it has been hypothesized that the aromatic ring of catecholamines plays a role in triggering receptor activation through interactions with a conserved cluster of aromatic residues in the sixth transmembrane segment by a rotamer toggle switch mechanism. Our experiments indicate that the aromatic ring of salbutamol does not activate this mechanism either directly or indirectly. Moreover, the non-catechol ring of partial agonists does not interact optimally with serine residues in the fifth transmembrane helix that have been shown to play an important role in activation by catecholamines. These results demonstrate unexpected differences in binding and activation by structurally similar agonists and partial agonists. Moreover, they provide evidence that activation of a GPCR is a multistep process that can be dissected into its component parts using agonist fragments.


Asunto(s)
Catecoles/química , Receptores Adrenérgicos beta 2/química , Albuterol/química , Animales , Sitios de Unión , Fenómenos Bioquímicos , Bioquímica , Catecolaminas/química , Humanos , Insectos , Isoproterenol/química , Cinética , Ligandos , Lípidos/química , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Receptores Acoplados a Proteínas G/química , Espectrometría de Fluorescencia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA