Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Infect Dis ; 138: 54-62, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37995831

RESUMEN

OBJECTIVES: Several factors can cause acute flaccid paralysis cases including non-polio enteroviruses. In Senegal, few studies on non-polio enteroviruses (NPEV) have been performed. METHODS: Our study assess the molecular epidemiology of non-polio enteroviruses in Senegal from 2013 to 2021 through the previously existing programs for surveillance of polioviruses. RESULTS: A total of 3815 stool samples and 281 sewage samples were collected. After virus isolation by cell culture, non-polio enteroviruses-positive isolates were confirmed by reverse transcriptase-quantitative polymerase chain reaction. Following this detection, the positive samples were subjected to molecular characterization. Our data showed that 15.22% and 52.66% were positive in cell culture for non-polio enteroviruses in acute flaccid paralysis surveillance and environmental surveillance, respectively. These non-polio enteroviruses-positive isolates were detected all year round but tend to unequal peaks of circulation, and the age group 0-5 years was more vulnerable to infection (84.4%). Genetic characterization revealed the circulation of enteroviruses species infecting humans (Enterovirus A - Enterovirus D): Enterovirus A (29.2%) and Enterovirus B (63.1%) isolates from both the acute flaccid paralysis surveillance and environmental surveillance while Enterovirus C (5.3%) and Enterovirus D (2.4%) were only isolated from the acute flaccid paralysis surveillance. However, the highly prevalent Enterovirus B species from the acute flaccid paralysis surveillance included echovirus 7 and echovirus 13, whereas coxsackievirus A6 was the predominant species from the environmental surveillance. CONCLUSION: This first 8-year period study of NPEV in Senegal showed that NPEV represent important viral etiologies associated with acute flaccid paralysis cases and circulating in environmental surveillance in Senegal and highlighted the need to promote effective long-term strategies for monitoring of non-polio enteroviruses infections.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Humanos , Recién Nacido , Lactante , Preescolar , Aguas del Alcantarillado , Senegal/epidemiología , Parálisis/epidemiología , Enterovirus/genética , Infecciones por Enterovirus/epidemiología , Enterovirus Humano B , Antígenos Virales
2.
Microbiol Resour Announc ; 12(10): e0021423, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37772851

RESUMEN

Astroviruses are common causes of gastroenteritis in humans and other animals. Herein, we reported a near-complete human astrovirus (HAstV) sequence detected in a child with acute flaccid paralysis. The sample was collected in Guinea in January 2021. Phylogenetic analyses indicated that this virus belonged to the HAstV-1 genotype.

3.
Vaccines (Basel) ; 10(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35746451

RESUMEN

Enterovirus A71 (EV-A71) is a non-polio enterovirus that currently represents a major public health concern worldwide. In Africa, only sporadic cases have been reported. Acute flaccid paralysis and environmental surveillance programs have been widely used as strategies for documenting the circulation of polio and non-polio enteroviruses. To date, little is known about the molecular epidemiology of enterovirus A71 in Africa where resources and diagnostic capacities are limited. To fill this gap in Senegal, a total of 521 non-polio enterovirus isolates collected from both acute flaccid paralysis (AFP) and environmental surveillance (ES) programs between 2013 and 2020 were screened for enterovirus A71 using real-time RT-PCR. Positive isolates were sequenced, and genomic data were analyzed using phylogeny. An overall rate of 1.72% (9/521) of the analyzed isolates tested positive for enterovirus A71. All positive isolates originated from the acute flaccid paralysis cases, and 44.4% (4/9) of them were isolated in 2016. The nine newly characterized sequences obtained in our study included eight complete polyprotein sequences and one partial sequence of the VP1 gene, all belonging to the C genogroup. Seven out of the eight complete polyprotein sequences belonged to the C2 subgenotype, while one of them grouped with previous sequences from the C1 subgenotype. The partial VP1 sequence belonged to the C1 subgenotype. Our data provide not only new insights into the recent molecular epidemiology of enterovirus A71 in Senegal but also point to the crucial need to set up specific surveillance programs targeting non-polio enteroviruses at country or regional levels in Africa for rapid identification emerging or re-emerging enteroviruses and better characterization of public health concerns causing acute flaccid paralysis in children such as enterovirus A71. To estimate the real distribution of EV-A71 in Africa, more sero-epidemiological studies should be promoted, particularly in countries where the virus has already been reported.

4.
Microorganisms ; 10(3)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35336125

RESUMEN

Wesselsbron is a neglected, mosquito-borne zoonotic disease endemic to Africa. The virus is mainly transmitted by the mosquitoes of the Aedes genus and primarily affects domestic livestock species with teratogenic effects but can jump to humans. Although no major outbreak or fatal case in humans has been reported as yet worldwide, a total of 31 acute human cases of Wesselsbron infection have been previously described since its first isolation in 1955. However, most of these cases were reported from Sub-Saharan Africa where resources are limited and a lack of diagnostic means exists. We describe here two molecular diagnostic tools suitable for Wesselsbron virus detection. The newly established reverse transcription-quantitative polymerase chain reaction and reverse-transcription-recombinase polymerase amplification assays are highly specific and repeatable, and exhibit good agreement with the reference assay on the samples tested. The validation on clinical and veterinary samples shows that they can be accurately used for Wesselsbron virus detection in public health activities and the veterinary field. Considering the increasing extension of Aedes species worldwide, these new assays could be useful not only in laboratory studies for Wesselsbron virus, but also in routine surveillance activities for zoonotic arboviruses and could be applied in well-equipped central laboratories or in remote areas in Africa, regarding the reverse-transcription-recombinase polymerase amplification assay.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA