Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(6): 1299-1312.e29, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474368

RESUMEN

Metformin is the first-line therapy for treating type 2 diabetes and a promising anti-aging drug. We set out to address the fundamental question of how gut microbes and nutrition, key regulators of host physiology, affect the effects of metformin. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we developed a high-throughput four-way screen to define the underlying host-microbe-drug-nutrient interactions. We show that microbes integrate cues from metformin and the diet through the phosphotransferase signaling pathway that converges on the transcriptional regulator Crp. A detailed experimental characterization of metformin effects downstream of Crp in combination with metabolic modeling of the microbiota in metformin-treated type 2 diabetic patients predicts the production of microbial agmatine, a regulator of metformin effects on host lipid metabolism and lifespan. Our high-throughput screening platform paves the way for identifying exploitable drug-nutrient-microbiome interactions to improve host health and longevity through targeted microbiome therapies. VIDEO ABSTRACT.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Interacciones Microbiota-Huesped/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Agmatina/metabolismo , Animales , Caenorhabditis elegans/microbiología , Proteína Receptora de AMP Cíclico , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Humanos , Hipoglucemiantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Longevidad/efectos de los fármacos , Metformina/farmacología , Nutrientes/metabolismo
2.
Gastroenterology ; 160(5): 1784-1798.e0, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33387530

RESUMEN

BACKGROUND & AIMS: To influence host and disease phenotype, compositional microbiome changes, which have been demonstrated in patients with primary sclerosing cholangitis (PSC), must be accompanied by functional changes. We therefore aimed to characterize the genetic potential of the gut microbiome in patients with PSC compared with healthy controls (HCs) and patients with inflammatory bowel disease (IBD). METHODS: Fecal DNA from 2 cohorts (1 Norwegian and 1 German), in total comprising 136 patients with PSC (58% with IBD), 158 HCs, and 93 patients with IBD without PSC, were subjected to metagenomic shotgun sequencing, generating 17 billion paired-end sequences, which were processed using HUMAnN2 and MetaPhlAn2, and analyzed using generalized linear models and random effects meta-analyses. RESULTS: Patients with PSC had fewer microbial genes compared with HCs (P < .0001). Compared with HCs, patients with PSC showed enrichment and increased prevalence of Clostridium species and a depletion of, for example, Eubacterium spp and Ruminococcus obeum. Patients with PSC showed marked differences in the abundance of genes related to vitamin B6 synthesis and branched-chain amino acid synthesis (Qfdr < .05). Targeted metabolomics of plasma from an independent set of patients with PSC and controls found reduced concentrations of vitamin B6 and branched-chain amino acids in PSC (P < .0001), which strongly associated with reduced liver transplantation-free survival (log-rank P < .001). No taxonomic or functional differences were detected between patients with PSC with and without IBD. CONCLUSIONS: The gut microbiome in patients with PSC exhibits large functional differences compared with that in HCs, including microbial metabolism of essential nutrients. Alterations in related circulating metabolites associated with disease course, suggesting that microbial functions may be relevant for the disease process in PSC.


Asunto(s)
Bacterias/metabolismo , Colangitis Esclerosante/microbiología , Microbioma Gastrointestinal , Metaboloma , Metagenoma , Adolescente , Adulto , Anciano , Bacterias/genética , Estudios de Casos y Controles , Colangitis Esclerosante/sangre , Colangitis Esclerosante/diagnóstico , Colangitis Esclerosante/cirugía , Estudios Transversales , Disbiosis , Heces/microbiología , Femenino , Alemania , Humanos , Trasplante de Hígado , Masculino , Metabolómica , Metagenómica , Persona de Mediana Edad , Noruega , Filogenia , Supervivencia sin Progresión , Adulto Joven
3.
BMC Microbiol ; 21(1): 276, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635060

RESUMEN

Compared to the huge microbial diversity in most mammals, human gut microbiomes have lost diversity while becoming specialized for animal-based diets - especially compared to chimps, their genetically closest ancestors. The lowered microbial diversity within the gut of westernized populations has also been associated with different kinds of chronic inflammatory diseases in humans. To further deepen our knowledge on phylogenetic and ecologic impacts on human health and fitness, we established the herein presented biobank as well as its comprehensive microbiota analysis. In total, 368 stool samples from 38 different animal species, including Homo sapiens, belonging to four diverse mammalian orders were collected at seven different locations and analyzed by 16S rRNA gene amplicon sequencing. Comprehensive data analysis was performed to (i) determine the overall impact of host phylogeny vs. diet, location, and ecology and to (ii) examine the general pattern of fecal bacterial diversity across captive mammals and humans.By using a controlled study design with captive mammals we could verify that host phylogeny is the most dominant driver of mammalian gut microbiota composition. However, the effect of ecology appears to be able to overcome host phylogeny and should therefore be studied in more detail in future studies. Most importantly, our study could observe a remarkable decrease of Spirochaetes and Prevotella in westernized humans and platyrrhines, which is probably not only due to diet, but also to the social behavior and structure in these communities.Our study highlights the importance of phylogenetic relationship and ecology within the evolution of mammalian fecal microbiota composition. Particularly, the observed decrease of Spirochaetes and Prevotella in westernized communities might be associated to lifestyle dependent rapid evolutionary changes, potentially involved in the establishment of dysbiotic microbiomes, which promote the etiology of chronic diseases.


Asunto(s)
Ecosistema , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Prevotella/fisiología , Spirochaetales/fisiología , Población Urbana , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Dieta , Humanos , Filogenia , ARN Ribosómico 16S/genética
4.
Gut ; 67(2): 263-270, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-27872184

RESUMEN

OBJECTIVE: IBS is a common gut disorder of uncertain pathogenesis. Among other factors, genetics and certain foods are proposed to contribute. Congenital sucrase-isomaltase deficiency (CSID) is a rare genetic form of disaccharide malabsorption characterised by diarrhoea, abdominal pain and bloating, which are features common to IBS. We tested sucrase-isomaltase (SI) gene variants for their potential relevance in IBS. DESIGN: We sequenced SI exons in seven familial cases, and screened four CSID mutations (p.Val557Gly, p.Gly1073Asp, p.Arg1124Ter and p.Phe1745Cys) and a common SI coding polymorphism (p.Val15Phe) in a multicentre cohort of 1887 cases and controls. We studied the effect of the 15Val to 15Phe substitution on SI function in vitro. We analysed p.Val15Phe genotype in relation to IBS status, stool frequency and faecal microbiota composition in 250 individuals from the general population. RESULTS: CSID mutations were more common in patients than asymptomatic controls (p=0.074; OR=1.84) and Exome Aggregation Consortium reference sequenced individuals (p=0.020; OR=1.57). 15Phe was detected in 6/7 sequenced familial cases, and increased IBS risk in case-control and population-based cohorts, with best evidence for diarrhoea phenotypes (combined p=0.00012; OR=1.36). In the population-based sample, 15Phe allele dosage correlated with stool frequency (p=0.026) and Parabacteroides faecal microbiota abundance (p=0.0024). The SI protein with 15Phe exhibited 35% reduced enzymatic activity in vitro compared with 15Val (p<0.05). CONCLUSIONS: SI gene variants coding for disaccharidases with defective or reduced enzymatic activity predispose to IBS. This may help the identification of individuals at risk, and contribute to personalising treatment options in a subset of patients.


Asunto(s)
Síndrome del Colon Irritable/enzimología , Síndrome del Colon Irritable/genética , Complejo Sacarasa-Isomaltasa/genética , Complejo Sacarasa-Isomaltasa/metabolismo , Adulto , Animales , Errores Innatos del Metabolismo de los Carbohidratos/genética , Estudios de Casos y Controles , Línea Celular , Membrana Celular/enzimología , Análisis Mutacional de ADN , Defecación/genética , Diarrea/etiología , Exones , Heces/microbiología , Femenino , Dosificación de Gen , Genotipo , Haplorrinos , Humanos , Síndrome del Colon Irritable/complicaciones , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Complejo Sacarasa-Isomaltasa/deficiencia , Transfección
5.
PLoS Negl Trop Dis ; 15(3): e0009232, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33657123

RESUMEN

Intestinal parasitic infections, caused by helminths and protozoa, are globally distributed and major causes of worldwide morbidity. The gut microbiota may modulate parasite virulence and host response upon infection. The complex interplay between parasites and the gut microbiota is poorly understood, partly due to sampling difficulties in remote areas with high parasite burden. In a large study of children in Guinea-Bissau, we found high prevalence of intestinal parasites. By sequencing of the 16S rRNA genes of fecal samples stored on filter paper from a total of 1,204 children, we demonstrate that the bacterial microbiota is not significantly altered by helminth infections, whereas it is shaped by the presence of both pathogenic and nonpathogenic protozoa, including Entamoeba (E.) spp. and Giardia (G.) lamblia. Within-sample diversity remains largely unaffected, whereas overall community composition is significantly affected by infection with both nonpathogenic E. coli (R2 = 0.0131, P = 0.0001) and Endolimax nana (R2 = 0.00902, P = 0.0001), and by pathogenic E. histolytica (R2 = 0.0164, P = 0.0001) and G. lamblia (R2 = 0.00676, P = 0.0001). Infections with multiple parasite species induces more pronounced shifts in microbiota community than mild ones. A total of 31 bacterial genera across all four major bacterial phyla were differentially abundant in protozoan infection as compared to noninfected individuals, including increased abundance of Prevotella, Campylobacter and two Clostridium clades, and decreased abundance of Collinsella, Lactobacillus, Ruminococcus, Veillonella and one Clostridium clade. In the present study, we demonstrate that the fecal bacterial microbiota is shaped by intestinal parasitic infection, with most pronounced associations for protozoan species. Our results provide insights into the interplay between the microbiota and intestinal parasites, which are valuable to understand infection biology and design further studies aimed at optimizing treatment strategies.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por Protozoos/microbiología , Infecciones por Protozoos/parasitología , Adolescente , Animales , Bacterias/clasificación , Bacterias/genética , Niño , Preescolar , Coinfección/microbiología , Coinfección/parasitología , Entamoeba/aislamiento & purificación , Heces/microbiología , Heces/parasitología , Femenino , Giardia/aislamiento & purificación , Guinea Bissau , Helmintos/aislamiento & purificación , Humanos , Parasitosis Intestinales/epidemiología , Parasitosis Intestinales/parasitología , Masculino , ARN Ribosómico 16S
6.
Cell Host Microbe ; 26(2): 252-264.e10, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31399369

RESUMEN

Obesity and type 2 diabetes (T2D) are metabolic disorders that are linked to microbiome alterations. However, their co-occurrence poses challenges in disentangling microbial features unique to each condition. We analyzed gut microbiomes of lean non-diabetic (n = 633), obese non-diabetic (n = 494), and obese individuals with T2D (n = 153) from German population and metabolic disease cohorts. Microbial taxonomic and functional profiles were analyzed along with medical histories, serum metabolomics, biometrics, and dietary data. Obesity was associated with alterations in microbiome composition, individual taxa, and functions with notable changes in Akkermansia, Faecalibacterium, Oscillibacter, and Alistipes, as well as in serum metabolites that correlated with gut microbial patterns. However, microbiome associations were modest for T2D, with nominal increases in Escherichia/Shigella. Medications, including antihypertensives and antidiabetics, along with dietary supplements including iron, were significantly associated with microbiome variation. These results differentiate microbial components of these interrelated metabolic diseases and identify dietary and medication exposures to consider in future studies.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Microbioma Gastrointestinal/fisiología , Obesidad/complicaciones , Obesidad/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Dieta , Suplementos Dietéticos , Heces/microbiología , Femenino , Alemania , Humanos , Hierro/metabolismo , Magnesio/metabolismo , Masculino , Enfermedades Metabólicas/complicaciones , Metagenómica , Ratones , Ratones Endogámicos C57BL , Análisis Multivariante , Evaluación Nutricional , Suero/metabolismo
7.
Gut Microbes ; 9(1): 68-75, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-28816579

RESUMEN

Factors shaping the human intestinal microbiota range from environmental influences, like smoking and exercise, over dietary patterns and disease to the host's genetic variation. Recently, we could show in a microbiome genome-wide association study (mGWAS) targeting genetic variation influencing the ß diversity of gut microbial communities, that approximately 10% of the overall gut microbiome variation can be explained by host genetics. Here, we report on the application of a new method for genotype-ß-diversity association testing, the distance-based F (DBF) test. With this we identified 4 loci with genome-wide significant associations, harboring the genes CBEP4, SLC9A8, TNFSF4, and SP140, respectively. Our findings highlight the utility of the high-performance DBF test in ß diversity GWAS and emphasize the important role of host genetics and immunity in shaping the human intestinal microbiota.


Asunto(s)
Bacterias/genética , Biodiversidad , Microbioma Gastrointestinal , Sitios Genéticos/genética , Estudio de Asociación del Genoma Completo , Modelos Estadísticos , Antígenos Nucleares/genética , Bacterias/clasificación , Variación Genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad/genética , Ligando OX40/genética , Proteínas de Unión al ARN/genética , Reproducibilidad de los Resultados , Intercambiadores de Sodio-Hidrógeno/genética , Factores de Transcripción/genética
8.
Front Genet ; 7: 2, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26870081

RESUMEN

The development and progression of cancer, a collection of diseases with complex genetic architectures, is facilitated by the interplay of multiple etiological factors. This complexity challenges the traditional single-platform study design and calls for an integrated approach to data analysis. However, integration of heterogeneous measurements of biological variation is a non-trivial exercise due to the diversity of the human genome and the variety of output data formats and genome coverage obtained from the commonly used molecular platforms. This review article will provide an introduction to integration strategies used for analyzing genetic risk factors for cancer. We critically examine the ability of these strategies to handle the complexity of the human genome and also accommodate information about the biological and functional interactions between the elements that have been measured-making the assessment of disease risk against a composite genomic factor possible. The focus of this review is to provide an overview and introduction to the main strategies and to discuss where there is a need for further development.

9.
Nat Genet ; 48(11): 1396-1406, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27723756

RESUMEN

Human gut microbiota is an important determinant for health and disease, and recent studies emphasize the numerous factors shaping its diversity. Here we performed a genome-wide association study (GWAS) of the gut microbiota using two cohorts from northern Germany totaling 1,812 individuals. Comprehensively controlling for diet and non-genetic parameters, we identify genome-wide significant associations for overall microbial variation and individual taxa at multiple genetic loci, including the VDR gene (encoding vitamin D receptor). We observe significant shifts in the microbiota of Vdr-/- mice relative to control mice and correlations between the microbiota and serum measurements of selected bile and fatty acids in humans, including known ligands and downstream metabolites of VDR. Genome-wide significant (P < 5 × 10-8) associations at multiple additional loci identify other important points of host-microbe intersection, notably several disease susceptibility genes and sterol metabolism pathway components. Non-genetic and genetic factors each account for approximately 10% of the variation in gut microbiota, whereby individual effects are relatively small.


Asunto(s)
Microbioma Gastrointestinal , Receptores de Calcitriol/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Bacterias/clasificación , Bacterias/genética , Estudios de Cohortes , Dieta , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
10.
Cancer Discov ; 4(7): 804-15, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25050558

RESUMEN

UNLABELLED: Approximately half of the familial aggregation of breast cancer remains unexplained. A multiple-case breast cancer family exome-sequencing study identified three likely pathogenic mutations in RINT1 (NM_021930.4) not present in public sequencing databases: RINT1 c.343C>T (p.Q115X), c.1132_1134del (p.M378del), and c.1207G>T (p.D403Y). On the basis of this finding, a population-based case-control mutation-screening study was conducted that identified 29 carriers of rare (minor allele frequency < 0.5%), likely pathogenic variants: 23 in 1,313 early-onset breast cancer cases and six in 1,123 frequency-matched controls [OR, 3.24; 95% confidence interval (CI), 1.29-8.17; P = 0.013]. RINT1 mutation screening of probands from 798 multiple-case breast cancer families identified four additional carriers of rare genetic variants. Analysis of the incidence of first primary cancers in families of women carrying RINT1 mutations estimated that carriers were at increased risk of Lynch syndrome-spectrum cancers [standardized incidence ratio (SIR), 3.35; 95% CI, 1.7-6.0; P = 0.005], particularly for relatives diagnosed with cancer under the age of 60 years (SIR, 10.9; 95% CI, 4.7-21; P = 0.0003). SIGNIFICANCE: The work described in this study adds RINT1 to the growing list of genes in which rare sequence variants are associated with intermediate levels of breast cancer risk. Given that RINT1 is also associated with a spectrum of cancers with mismatch repair defects, these findings have clinical applications and raise interesting biological questions.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Estudios de Casos y Controles , Exoma , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Mutación , Linaje , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA