Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 374(2059)2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26667909

RESUMEN

Subglacial lakes have long been considered hydraulically isolated water bodies underneath ice sheets. This view changed radically with the advent of repeat-pass satellite altimetry and the discovery of multiple lake discharges and water infill, associated with water transfer over distances of more than 200 km. The presence of subglacial lakes also influences ice dynamics, leading to glacier acceleration. Furthermore, subglacial melting under the Antarctic ice sheet is more widespread than previously thought, and subglacial melt rates may explain the availability for water storage in subglacial lakes and water transport. Modelling of subglacial water discharge in subglacial lakes essentially follows hydraulics of subglacial channels on a hard bed, where ice sheet surface slope is a major control on triggering subglacial lake discharge. Recent evidence also points to the development of channels in deformable sediment in West Antarctica, with significant water exchanges between till and ice. Most active lakes drain over short time scales and respond rapidly to upstream variations. Several Antarctic subglacial lakes exhibit complex interactions with the ice sheet due to water circulation. Subglacial lakes can therefore-from a modelling point of view-be seen as confined small oceans underneath an imbedded ice shelf.

2.
Open Res Eur ; 1: 128, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37994356

RESUMEN

The FLEXGRID 2 project develops a digital platform designed to offer Digital Energy Services (DESs) that facilitate energy sector stakeholders (i.e. DSOs, TSOs, market operators, RES producers, retailers, flexibility aggregators) towards: i) automating and optimizing their investments and operation/management of their systems/assets, and ii) interacting in a dynamic and efficient way with their environment (electricity system) and the rest of the stakeholders. In this way, FLEXGRID envisages secure, sustainable, competitive, and affordable smart grids. A key objective is the incentivization of large-scale bottom-up investments in Distributed Energy Resources (DERs) through innovative smart grid management. Towards this goal, FLEXGRID develops innovative data models and energy market architectures (with high liquidity and efficiency) that effectively manage smart grids through an advanced TSO-DSO interaction as well as interaction between Transmission Network and Distribution Network level energy markets. Consequently, and through intelligence that exploits the innovation of the proposed market architecture, FLEXGRID develops investment tools able to examine in depth the emerging energy ecosystem and allow in this way: i) the financial sustainability of DER investors, and ii) the market liquidity/efficiency through advanced exploitation of DERs and intelligent network upgrades.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA