Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
bioRxiv ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39131318

RESUMEN

Experimental access to cell types within the mammalian spinal cord is severely limited by the availability of genetic tools. To enable access to lower motor neurons (LMNs) and LMN subtypes, which function to integrate information from the brain and control movement through direct innervation of effector muscles, we generated single cell multiome datasets from mouse and macaque spinal cords and discovered putative enhancers for each neuronal population. We cloned these enhancers into adeno-associated viral vectors (AAVs) driving a reporter fluorophore and functionally screened them in mouse. The most promising candidate enhancers were then extensively characterized using imaging and molecular techniques and further tested in rat and macaque to show conservation of LMN labeling. Additionally, we combined enhancer elements into a single vector to achieve simultaneous labeling of upper motor neurons (UMNs) and LMNs. This unprecedented LMN toolkit will enable future investigations of cell type function across species and potential therapeutic interventions for human neurodegenerative diseases.

2.
PLoS Genet ; 6(9): e1001125, 2010 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-20862312

RESUMEN

Aging is a complex phenotype responsive to a plethora of environmental inputs; yet only a limited number of transcriptional regulators are known to influence life span. How the downstream expression programs mediated by these factors (or others) are coordinated into common or distinct set of aging effectors is an addressable question in model organisms, such as C. elegans. Here, we establish the transcription factor ETS-4, an ortholog of vertebrate SPDEF, as a longevity determinant. Adult worms with ets-4 mutations had a significant extension of mean life span. Restoring ETS-4 activity in the intestine, but not neurons, of ets-4 mutant worms rescued life span to wild-type levels. Using RNAi, we demonstrated that ets-4 is required post-developmentally to regulate adult life span; thus uncoupling the role of ETS-4 in aging from potential functions in worm intestinal development. Seventy ETS-4-regulated genes, identified by gene expression profiling of two distinct ets-4 alleles and analyzed by bioinformatics, were enriched for known longevity effectors that function in lipid transport, lipid metabolism, and innate immunity. Putative target genes were enriched for ones that change expression during normal aging, the majority of which are controlled by the GATA factors. Also, some ETS-4-regulated genes function downstream of the FOXO factor, DAF-16 and the insulin/IGF-1 signaling pathway. However, epistasis and phenotypic analyses indicate that ets-4 functioned in parallel to the insulin/IGF-1 receptor, daf-2 and akt-1/2 kinases. Furthermore, ets-4 required daf-16 to modulate aging, suggesting overlap in function at the level of common targets that affect life span. In conclusion, ETS-4 is a new transcriptional regulator of aging, which shares transcriptional targets with GATA and FOXO factors, suggesting that overlapping pathways direct common sets of lifespan-related genes.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Longevidad/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Secuencia de Bases , Proteínas de Caenorhabditis elegans/metabolismo , ADN de Helmintos/metabolismo , Factores de Transcripción Forkhead , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto/genética , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Mucosa Intestinal/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Modelos Genéticos , Mutación/genética , Especificidad de Órganos/genética , Oviposición/genética , Unión Proteica , Transducción de Señal/genética , Factores de Transcripción/genética
3.
bioRxiv ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37790503

RESUMEN

Proper brain function requires the assembly and function of diverse populations of neurons and glia. Single cell gene expression studies have mostly focused on characterization of neuronal cell diversity; however, recent studies have revealed substantial diversity of glial cells, particularly astrocytes. To better understand glial cell types and their roles in neurobiology, we built a new suite of adeno-associated viral (AAV)-based genetic tools to enable genetic access to astrocytes and oligodendrocytes. These oligodendrocyte and astrocyte enhancer-AAVs are highly specific (usually > 95% cell type specificity) with variable expression levels, and our astrocyte enhancer-AAVs show multiple distinct expression patterns reflecting the spatial distribution of astrocyte cell types. To provide the best glial-specific functional tools, several enhancer-AAVs were: optimized for higher expression levels, shown to be functional and specific in rat and macaque, shown to maintain specific activity in epilepsy where traditional promoters changed activity, and used to drive functional transgenes in astrocytes including Cre recombinase and acetylcholine-responsive sensor iAChSnFR. The astrocyte-specific iAChSnFR revealed a clear reward-dependent acetylcholine response in astrocytes of the nucleus accumbens during reinforcement learning. Together, this collection of glial enhancer-AAVs will enable characterization of astrocyte and oligodendrocyte populations and their roles across species, disease states, and behavioral epochs.

4.
AIDS Res Hum Retroviruses ; 38(5): 350-358, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34714100

RESUMEN

The HIV Research for Prevention (HIVR4P) conference catalyzes knowledge sharing on biomedical HIV prevention interventions such as HIV vaccines, antibody infusions, pre-exposure prophylaxis, and microbicides in totality-from the molecular details and delivery formulations to the behavioral, social, and structural underpinnings. HIVR4P // Virtual was held over the course of 2 weeks on January 27-28 and February 3-4, 2021 as the coronavirus disease 2019 (COVID-19) pandemic continued to inflict unprecedented harm globally. The HIVR4P community came together with 1,802 researchers, care providers, policymakers, implementers, and advocates from 92 countries whose expertise spanned the breadth of the HIV prevention pipeline from preclinical to implementation. The program included 113 oral and 266 poster presentations. This article presents a brief summary of the conference highlights. Complete abstracts, webcasts, and daily rapporteur summaries may be found on the conference website (https://www.hivr4p.org/).


Asunto(s)
Vacunas contra el SIDA , Fármacos Anti-VIH , COVID-19 , Infecciones por VIH , Profilaxis Pre-Exposición , Fármacos Anti-VIH/uso terapéutico , COVID-19/prevención & control , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , Investigación sobre Servicios de Salud , Humanos
5.
Front Immunol ; 10: 1025, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31134085

RESUMEN

It is now well-accepted that Fc-mediated effector functions, including antibody-dependent cellular cytotoxicity (ADCC), can contribute to vaccine-elicited protection as well as post-infection control of HIV viremia. This picture was derived using a wide array of ADCC assays, no two of which are strictly comparable, and none of which is qualified at the clinical laboratory level. An earlier comparative study of assay protocols showed that while data from different ADCC assay formats were often correlated, they remained distinct in terms of target cells and the epitopes and antigen(s) available for recognition by antibodies, the effector cells, and the readout of cytotoxicity. This initial study warrants expanded analyses of the relationships among all current assay formats to determine where they detect overlapping activities and where they do not. Here we summarize knowns and unknowns of assaying ADCC against HIV-1.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Anticuerpos Neutralizantes/inmunología , Seropositividad para VIH , Humanos , Células Asesinas Naturales/inmunología , Macrófagos/inmunología , Neutrófilos/inmunología
6.
AIDS Res Hum Retroviruses ; 35(7): 598-607, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31007035

RESUMEN

The HIV Research for Prevention (HIVR4P) conference is dedicated to advancing HIV prevention research, responding to a growing consensus that effective and durable prevention will require a combination of approaches as well as unprecedented collaboration among scientists, practitioners, and community workers from different fields and geographic areas. The conference theme in 2018, "From Research to Impact," acknowledged an increasing focus on translation of promising research findings into practical, accessible, and affordable HIV prevention options for those who need them worldwide. HIVR4P 2018 was held in Madrid, Spain, on 21-25 October, with >1,400 participants from 52 countries around the globe, representing all aspects of HIV prevention research and implementation. The program included 137 oral and 610 poster presentations. This article presents a brief summary of highlights from the conference. More detailed information, complete abstracts as well as webcasts and daily Rapporteur summaries may be found on the conference website.


Asunto(s)
Infecciones por VIH/prevención & control , Investigación Biomédica/estadística & datos numéricos , Investigación Biomédica/tendencias , Ensayos Clínicos como Asunto/estadística & datos numéricos , Infecciones por VIH/terapia , Infecciones por VIH/transmisión , Humanos
7.
AIDS Res Hum Retroviruses ; 33(8): 749-759, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28649869

RESUMEN

HIV Research for Prevention: AIDS Vaccine, Microbicide, and ARV-based Prevention Science (HIVR4P) was built on a growing consensus that effective HIV prevention requires a combination of approaches and that understanding, analyzing, and debating the cross-cutting issues that impact prevention research are all essential to combat the global HIV/AIDS epidemic. To that end, the biennial HIVR4P conference is dedicated to all biomedical HIV prevention research approaches, including HIV vaccines, microbicides, pre-exposure prophylaxis, and treatment as prevention. The HIVR4P 2016 conference was held in Chicago, Illinois (USA), on October 17-21, and included more than 700 scientific presentations and 21 satellite sessions covering the latest and most promising advances across the HIV prevention research field. The theme "Partnering for Prevention" represented the conference's commitment to breaking down silos between research disciplines as well as between researchers, program developers, care providers, advocates, communities, and funders. Delegates spanning 42 countries attended the conference. One-third of those in attendance were early career investigators, which reflects a firm commitment to emerging researchers and ultimately to the goal of developing a sustainable scientific enterprise well into the future. This article presents a concise summary of highlights from the conference. For a more detailed account, one may find full abstracts, daily summaries, and webcasts on the conference website at hivr4p.org.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Transmisión de Enfermedad Infecciosa/prevención & control , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , Investigación Biomédica/tendencias , Control de Enfermedades Transmisibles/tendencias , Salud Global , Humanos
8.
Elife ; 32014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-25006036

RESUMEN

Influenza is notable for its evolutionary capacity to escape immunity targeting the viral hemagglutinin. We used deep mutational scanning to examine the extent to which a high inherent mutational tolerance contributes to this antigenic evolvability. We created mutant viruses that incorporate most of the ≈10(4) amino-acid mutations to hemagglutinin from A/WSN/1933 (H1N1) influenza. After passaging these viruses in tissue culture to select for functional variants, we used deep sequencing to quantify mutation frequencies before and after selection. These data enable us to infer the preference for each amino acid at each site in hemagglutinin. These inferences are consistent with existing knowledge about the protein's structure and function, and can be used to create a model that describes hemagglutinin's evolution far better than existing phylogenetic models. We show that hemagglutinin has a high inherent tolerance for mutations at antigenic sites, suggesting that this is one factor contributing to influenza's antigenic evolution.


Asunto(s)
Antígenos Virales/genética , Evolución Molecular , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Mutación , Orthomyxoviridae/genética , Alelos , Secuencia de Aminoácidos , Codón , Análisis Mutacional de ADN , Biblioteca de Genes , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA