Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175758

RESUMEN

Grafting is widely used to improve the stress tolerance and the fruit yield of horticultural crops. Ribonucleoprotein complexes formed by mRNAs and proteins play critical roles in the communication between scions and stocks of grafted plants. In Pyrus betulaefolia, ankyrin was identified previously to promote the long-distance movement of the ribonucleoprotein complex(PbWoxT1-PbPTB3) by facilitating callose degradation at plasmodesmata. However, the mechanism of the ankyrin-mediated callose degradation remains elusive. In this study, we discovered a ß-1,3-glucanase (EC 3.2.1.39, PbPDBG) using ankyrin as a bait from plasmodesmata by co-immunoprecipitation and mass spectrometry. Ankyrin was required for the plasmodesmata-localization of PbPDBG. The grafting and bombardment experiments indicated that overexpressing PbPDBG resulted in decreased callose content at plasmodesmata, and thereby promoting the long-distance transport of the ribonucleoprotein complex. Altogether, our findings revealed that PbPDBG was the key factor in ankyrin-mediated callose degradation at plasmodesmata.


Asunto(s)
Plasmodesmos , Pyrus , Plasmodesmos/metabolismo , Pyrus/metabolismo , Ancirinas/metabolismo , Productos Agrícolas/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
2.
Plant Sci ; 332: 111705, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37059127

RESUMEN

Grafting is the main asexual propagation method for horticultural crops and can enhance their resistance to biotic or abiotic stress. Many mRNAs can be transported over long distances through the graft union, however, the function of mobile mRNAs remains poorly understood. Here, we exploited lists of candidate mobile mRNAs harboring potential 5-methylcytosine (m5C) modification in pear (Pyrus betulaefolia). dCAPS RT-PCR and RT-PCR were employed to demonstrate the mobility of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase1 (PbHMGR1) mRNA in grafted plants of both pear and tobacco (Nicotiana tabacum). Overexpressing PbHMGR1 in tobacco plants enhanced salt tolerance during seed germination. In addition, both histochemical staining and GUS expression analysis showed that PbHMGR1 could directly respond to salt stress. Furthermore, it was found that the relative abundance of PbHMGR1 increased in heterografted scion, which avoided serious damage under salt stress. Collectively, these findings established that PbHMGR1 mRNA could act as a salt-responsive signal and move through the graft union to enhance salt tolerance of scion, which might be used as a new plant breeding technique to improve resistance of scion through a stress-tolerant rootstock.


Asunto(s)
Pyrus , Pyrus/genética , Pyrus/metabolismo , Tolerancia a la Sal/genética , Floema/genética , Floema/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fitomejoramiento
3.
Braz J Microbiol ; 51(3): 875-881, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32347530

RESUMEN

This study aims to develop a rapid bacterial antibiotic susceptibility test (AST) method by Bacteria-aptamer@AgNPs-surface enhanced Raman spectroscopy (SERS) and further evaluate the influence of different antibiotics on the Raman intensity of bacteria. The Raman intensity of Escherichia coli O157:H7 (E. coli O157:H7) and Staphylococcus aureus (S. aureus) in the presence of different concentrations of antibiotics in 2 h was detected by Bacteria-aptamer@AgNPs-SERS in this study. Our results found that the bacteria Raman signal peak at 735 cm-1 and the minimum inhibitory concentration (MIC) value was determined in 1 h according to Raman signals. In 2 h, the bacteria Raman signal growth at sub-MIC concentrations of four different kinds of antibiotics and the bacteria colony-forming unit (CFU) have similar enhancements. SERS utilizes special functions of rough metal surfaces and offers a huge enhancement of Raman intensities with reduced fluorescence backgrounds, which makes it an ultrasensitive tool of detection. This rapid AST method and the enhancement effect should be of value in search of new antibiotic drugs.


Asunto(s)
Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Espectrometría Raman/métodos , Aptámeros de Nucleótidos/química , Bacterias/química , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Recuento de Colonia Microbiana , Nanopartículas del Metal/química , Plata/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA