RESUMEN
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly variable virus with genetic diversity. This study comparatively examines the pathogenicity and immunological impact of two emergent PRRSV strains, SD53 and HuN4, in piglets. Our results indicate that SD53 strain induces milder clinical syndromes and less severe tissue damage than HuN4, despite similar replication rates. Hematological tests showed less perturbations in peripheral blood cell profiles after SD53 infection, suggesting a less systemic impact. The neutrophil-to-lymphocyte ratio was notably lower in SD53-infected piglets, suggesting a less intense inflammatory reaction. Moreover, SD53 infection led to lower levels of pro-inflammatory cytokines, further supporting a less pronounced inflammatory profile. Both strains induced the production of PRRSV-specific antibodies. However, transcriptomic analysis of lung and lymph node tissues from infected piglets disclosed a more moderate up-regulation of core genes, including ISGs, in the SD53 group. Further analysis indicated that SD53 primarily enhanced immune-related signaling, particularly in T cell response modules, while HuN4 caused a more robust pro-inflammatory reaction and a dampening of T cell functionality. Flow cytometry analyses confirmed these findings, showing higher CD4/CD8 ratios and increased CD4+ T cell percentages in SD53-infected piglets, implying a more robust T cell response. Collectively, these findings broaden our comprehension of PRRSV pathogenesis and may inform the development of future therapeutic or prophylactic strategies for controlling PRRSV infections more effectively. IMPORTANCE: The high mutation rate of porcine reproductive and respiratory syndrome virus (PRRSV) poses significant challenges to its accurate diagnosis and the implementation of effective control measures. This research explores the pathogenic profiles of two emerging PRRSV stains: the NADC30-like strain SD53 and the highly pathogenic strain HuN4. Our investigation reveals that SD53 initiates distinct immunopathological responses in vivo compared with those provoked by HuN4. By conducting a transcriptome analysis of differential gene expression in the lungs and lymph nodes of infected piglets, we unveil the intricate molecular mechanisms underlying the contrasting pathogenicity of these two strains. The comprehensive insights yielded by this study are instrumental in advancing our understanding of the dominant NADC30-like PRRSV strain, which has become increasingly prevalent in China's swine industry.
RESUMEN
The aetiological agent of porcine reproductive and respiratory syndrome, a deadly disease that affects pigs and seriously jeopardises the global swine industry, is a porcine reproductive and respiratory syndrome virus (PRRSV). Tylvalosin tartrate, which is a macrolide antibiotic, is the active ingredient in Aivlosin. In recent years, tylvalosin tartrate has widely been used to control porcine reproductive and respiratory syndrome in swine herds in China. However, whether tylvalosin tartrate has exerts anti-PRRSV effects remains controversial. In the present study, tylvalosin tartrate exhibited no effect on PRRSV susceptibility but suppressed the replication of PRRSV and the activity of infecting Marc-145 cells. Next, the relationship between the replication cycle of PRRSV and the activity of tylvalosin tartrate was further assessed. Tylvalosin tartrate did not affect the attachment and release stages of PRRSV or act during the internalisation stage of the virus in HuN4; however, contrasting effects were noted for strains CH-1a and SDVD-HN21. Tylvalosin tartrate acted on the replication stage of PRRSV and was not strain-specific in the replication stage of the PRRSV life cycle. The study findings provide an initial clarification of the inhibitory effects of tylvalosin tartrate on PRRSV, providing new insights into the treatment of PRRS.
Asunto(s)
Antivirales , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Tilosina , Replicación Viral , Virus del Síndrome Respiratorio y Reproductivo Porcino/efectos de los fármacos , Animales , Replicación Viral/efectos de los fármacos , Porcinos , Tilosina/farmacología , Tilosina/análogos & derivados , Antivirales/farmacología , Línea Celular , Síndrome Respiratorio y de la Reproducción Porcina/virología , Síndrome Respiratorio y de la Reproducción Porcina/tratamiento farmacológico , China , Antibacterianos/farmacologíaRESUMEN
Heavy metal contamination of soil commonly accompanies problems around gold mine tailings ponds. Fully investigating the distribution characteristics of heavy metals and the survival strategies of dominant plants in contaminated soils is crucial for effective pollution management and remediation. This study aims to investigate the contamination characteristics, sources of heavy metals (As, Cd, Pb, Hg, Cu, Zn, Cr, and Ni) in soils around gold mine tailings ponds areas (JHH and WZ) and to clarify the form distribution of heavy metals (As, Cd, Pb, Hg) in contaminated plots as well as their accumulation and translocation in native dominant plants. The results of the study showed that the concentrations of As, Pb, Cd, Cu, and Zn in soil exceeded the national limits at parts of the sampling sites in both study areas. The Nemerow pollution index showed that both study areas reached extreme high pollution levels. Spatial analysis showed that the main areas of contamination were concentrated around metallurgical plants and tailings ponds, with Cd exhibiting the most extensive area of contamination. In the JHH, As (74%), Cd (66%), Pb (77%), Zn (47%) were mainly from tailings releases, and Cu (52%) and Hg (51%) were mainly from gold ore smelting. In the WZ, As (42%), Cd (41%), Pb (73%), Cu (47%), and Zn (41%) were mainly from tailings releases. As, Cd, Pb, and Hg were mostly present in the residue state, and the proportion of water-soluble, ion-exchangeable, and carbonate-bound forms of Cd (19.93%) was significantly higher than that of other heavy metals. Artemisia L. and Amaranthus L. are the primary dominating plants, which exhibited superior accumulation of Cd compared to As, Pb, and Hg, and Artemisia L. demonstrated a robust translocation capacity for As, Pb, and Hg. Compared to the concentrations of other forms of soil heavy metals, the heavy metal content in Artemisia L correlates significantly better with the total soil heavy metal concentration. These results offer additional systematic data support and a deeper theoretical foundation to bolster pollution-control and ecological remediation efforts in mining areas.
Asunto(s)
Artemisia , Mercurio , Metales Pesados , Contaminantes del Suelo , Oro/análisis , Suelo/química , Cadmio , Plomo , Estanques , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Mercurio/análisis , Plantas , China , Medición de RiesgoRESUMEN
Pseudorabies virus (PRV), which is extremely infectious and can infect numerous mammals, has a risk of spillover into humans. Virus-host interactions determine viral entry and spreading. Here, we showed that neuropilin-1 (NRP1) significantly potentiates PRV infection. Mechanistically, NRP1 promoted PRV attachment and entry, and enhanced cell-to-cell fusion mediated by viral glycoprotein B (gB), gD, gH, and gL. Furthermore, through in vitro coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays, NRP1 was found to physically interact with gB, gD, and gH, and these interactions were C-end Rule (CendR) motif independent, in contrast to currently known viruses. Remarkably, we illustrated that the viral protein gB promotes NRP1 degradation via a lysosome-dependent pathway. We further demonstrate that gB promotes NRP1 degradation in a furin-cleavage-dependent manner. Interestingly, in this study, we generated gB furin cleavage site (FCS)-knockout PRV (Δfurin PRV) and evaluated its pathogenesis; in vivo, we found that Δfurin PRV virulence was significantly attenuated in mice. Together, our findings demonstrated that NRP1 is an important host factor for PRV and that NRP1 may be a potential target for antiviral intervention. IMPORTANCE Recent studies have shown accelerated PRV cross-species spillover and that PRV poses a potential threat to humans. PRV infection in humans always manifests as a high fever, tonic-clonic seizures, and encephalitis. Therefore, understanding the interaction between PRV and host factors may contribute to the development of new antiviral strategies against PRV. NRP1 has been demonstrated to be a receptor for several viruses that harbor CendR, including SARS-CoV-2. However, the relationships between NRP1 and PRV are poorly understood. Here, we found that NRP1 significantly potentiated PRV infection by promoting PRV attachment and enhanced cell-to-cell fusion. For the first time, we demonstrated that gB promotes NRP1 degradation via a lysosome-dependent pathway. Last, in vivo, Δfurin PRV virulence was significantly attenuated in mice. Therefore, NRP1 is an important host factor for PRV, and NRP1 may be a potential target for antiviral drug development.
Asunto(s)
COVID-19 , Herpesvirus Suido 1 , Seudorrabia , Ratones , Humanos , Animales , Herpesvirus Suido 1/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Furina/metabolismo , SARS-CoV-2 , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral , Proteínas Virales/metabolismo , Antivirales/metabolismo , MamíferosRESUMEN
Porcine reproductive and respiratory syndrome virus (PRRSV) is a devastating pathogen in the swine industry worldwide. miRNAs are reported to be involved in virus-host interaction. Here, we used high-throughput sequencing and miRNA inhibitors to screen possible miRNAs that can inhibit PRRSV infection on its target cell, porcine alveolar macrophages. We observed that miR-218 was downregulated upon virus infection, and knockdown of miR-218 significantly enhanced PRRSV replication. Overexpression of miR-218 resulted in a decrease in PRRSV replication, and this overexpression did not alter viral genomic RNA levels, but rather increased antiviral interferon signaling. Further analysis revealed that miR-218 regulated PRRSV replication by directly targeting porcine suppressor of cytokine signaling 3 (SOCS3), a JAK2 kinase inhibitor. Knockdown of the endogenous SOCS3 expression led to augmentation of type I interferon genes and resulted in decreased PRRSV replication, and vice versa. During PRRSV infection in vivo and in vitro, cellular miR-218 expression was downregulated and SOCS3 expression was upregulated, further supporting the inverse correlation between miR-218 and SOCS3 expression. The data on SOCS3 depletion in combination with miR-218 inhibition suggested that the antiviral activity of miR-218 required the SOCS3-mediated signaling pathway. Similarly, miR-218 negatively regulated PRRSV replication in Marc-145 cells, as well as the replication of porcine epidemic diarrhea virus and transmissible gastroenteritis virus in Vero and ST cells respectively. Taken together, these results demonstrate that PRRSV-induced miR-218 downregulation serves to inhibit the type I interferon response and may provide a novel therapeutic target for treatment of PRRSV and other viral infections.
Asunto(s)
Regulación hacia Abajo , Interferón Tipo I/metabolismo , Macrófagos Alveolares/virología , MicroARNs/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Replicación Viral , Animales , Línea Celular , Macrófagos Alveolares/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismoRESUMEN
BACKGROUND: Long noncoding RNA (lncRNA) is highly associated with inflammatory response and virus-induced interferon production. By far the majority of studies have focused on the immune-related lncRNAs of mice and humans, but the function of lncRNAs in porcine immune cells are poorly understood. Porcine reproductive and respiratory syndrome virus (PRRSV) impairs local immune responses in the lungs of nursery and growing pigs, whereas the virus triggers the inflammatory responses. Porcine alveolar macrophage (PAM) is the primary target cell of PRRSV, thus PRRSV is used as an in vitro model of inflammation. Here, we profiled lncRNA and mRNA repertories from PRRSV-infected PAMs to explore the underlying mechanism of porcine lncRNAs in regulating host immune responses. RESULTS: In this study, a total of 350 annotated lncRNAs and 1792 novel lncRNAs in PAMs were identified through RNA-seq analysis. Among them 86 differentially expressed (DE) lncRNAs and 406 DE protein-coding mRNAs were identified upon PRRSV incubation. GO category and KEGG pathway enrichment analyses revealed that these DE lncRNAs and mRNAs were mainly involved in inflammation- and pathogen infection-induced pathways. The results of dynamic correlated expression networks between lncRNAs and their predicted target genes uncovered that numerous lncRNAs, such as XLOC-022175, XLOC-019295, and XLOC-017089, were correlated with innate immune genes. Further analysis validated that these three lncRNAs were positively correlated with their predicted target genes including CXCL2, IFI6, and CD163. This study suggests that porcine lncRNAs affect immune responses against PRRSV infection through regulating their target genes in PAMs. CONCLUSION: This study provides both transcriptomic and epigenetic status of porcine macrophages. In response to PRRSV infection, comprehensive DE lncRNAs and mRNAs were profiled from PAMs. Co-expression analysis demonstrated that lncRNAs are emerging as the important modulators of immune gene activities through their critical influence upon PRRSV infection in porcine macrophages.
Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , ARN Largo no Codificante , Animales , Perfilación de la Expresión Génica , Macrófagos Alveolares , Ratones , Síndrome Respiratorio y de la Reproducción Porcina/genética , ARN Largo no Codificante/genética , PorcinosRESUMEN
Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen that affects the pig industry, is a highly genetically diverse RNA virus. However, the phylogenetic and genomic recombination properties of this virus have not been completely elucidated. In this study, comparative analyses of all available genomic sequences of North American (NA)-type PRRSVs (n = 355, including 138 PRRSV genomes sequenced in this study) in China and the United States during 2014-2018 revealed a high frequency of interlineage recombination hot spots in nonstructural protein 9 (NSP9) and the GP2 to GP3 regions. Lineage 1 (L1) PRRSV was found to be susceptible to recombination among PRRSVs both in China and the United States. The recombinant major parent between the 1991-2013 data and the 2014-2018 data showed a trend from complex to simple. The major recombination pattern changed from an L8 to L1 backbone during 2014-2018 for Chinese PRRSVs, whereas L1 was always the major backbone for US PRRSVs. Intralineage recombination hot spots were not as concentrated as interlineage recombination hot spots. In the two main clades with differential diversity in L1, NADC30-like PRRSVs are undergoing a decrease in population genetic diversity, NADC34-like PRRSVs have been relatively stable in population genetic diversity for years. Systematic analyses of insertion and deletion (indel) polymorphisms of NSP2 divided PRRSVs into 25 patterns, which could generate novel references for the classification of PRRSVs. The results of this study contribute to a deeper understanding of the recombination of PRRSVs and indicate the need for coordinated epidemiological investigations among countries.IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant swine diseases. However, the phylogenetic and genomic recombination properties of the PRRS virus (PRRSV) have not been completely elucidated. In this study, we systematically compared differences in the lineage distribution, recombination, NSP2 polymorphisms, and evolutionary dynamics between North American (NA)-type PRRSVs in China and in the United States. Strikingly, we found high frequency of interlineage recombination hot spots in nonstructural protein 9 (NSP9) and in the GP2 to GP3 region. Also, intralineage recombination hot spots were scattered across the genome between Chinese and US strains. Furthermore, we proposed novel methods based on NSP2 indel patterns for the classification of PRRSVs. Evolutionary dynamics analysis revealed that NADC30-like PRRSVs are undergoing a decrease in population genetic diversity, suggesting that a dominant population may occur and cause an outbreak. Our findings offer important insights into the recombination of PRRSVs and suggest the need for coordinated international epidemiological investigations.
Asunto(s)
Polimorfismo Genético , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Recombinación Genética , Proteínas Virales/genética , Animales , China/epidemiología , Filogeografía , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Síndrome Respiratorio y de la Reproducción Porcina/genética , Porcinos , Estados Unidos/epidemiologíaRESUMEN
Labeling viruses with high-photoluminescence quantum dots (QDs) for single virus tracking provides a visual tool to aid our understanding of viral infection mechanisms. However, efficiently labeling internal viral components without modifying the viral envelope and capsid remains a challenge, and existing strategies are not applicable to most viruses. Here, we have devised a strategy using the clustered regularly interspaced short palindromic repeats (CRISPR) imaging system to label the nucleic acids of Pseudorabies virus (PRV) with QDs. In this strategy, QDs were conjugated to viral nucleic acids with the help of nuclease-deactivated Cas9/gRNA complexes in the nuclei of living cells and then packaged into PRV during virion assembly. The processes of PRV-QD adsorption, cytoplasmic transport along microtubules, and nuclear entry were monitored in real time in both Vero and HeLa cells, demonstrating the utility and efficiency of the strategy in the study of viral infection.
Asunto(s)
Sistemas CRISPR-Cas/genética , Herpesvirus Suido 1/aislamiento & purificación , Puntos Cuánticos/química , Virión/aislamiento & purificación , Cápside , Células HeLa , Herpesvirus Suido 1/ultraestructura , Humanos , Virión/genéticaRESUMEN
Mine tailing dumps represent significant threats to ecological environments due to the presence of toxic substances. The present work investigated the relationship among microbial activity, the community, antibiotic resistance genes (ARGs) and trace metals in soil surrounding gold mine tailings. Using microbial metabolic activity and high-throughput sequencing analysis, we found the trace metals Cd and Hg could be main factors influencing the microbial community. According to bacterial co-occurrence pattern analysis, the effects of total cadmium and total mercury on bacterial diversity are potentially mediated by influencing bacteria community in the keystone module II. Additionally, most of metal-resistant bacteria belong to Actinobacteria and Proteobacteria, and the metal tolerance suggested to be linked with various functions including replication, recombination and repair, as well as inorganic ion transport and metabolism based on PICRUSt2 analysis. We also found that metals generated by mining activity may trigger the co-selection of antibiotic resistance in the phyla Actinobacteria and Proteobacteria due to co-resistance or cross resistance. Additionally, PLS-PM analysis revealed that metals could indirectly affect ARGs by influencing bacterial diversity in gold mining areas.
Asunto(s)
Metales Pesados , Microbiota , Contaminantes del Suelo , Antibacterianos/toxicidad , Farmacorresistencia Microbiana , Oro , Metales Pesados/toxicidad , Minería , Microbiología del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidadRESUMEN
Bcl2-associated athanogene (BAG) 3, which is a chaperone-mediated selective autophagy protein, plays a pivotal role in modulating the life cycle of a wide variety of viruses. Both positive and negative modulations of viruses by BAG3 were reported. However, the effects of BAG3 on pseudorabies virus (PRV) remain unknown. To investigate whether BAG3 could modulate the PRV life cycle during a lytic infection, we first identified PRV protein UL56 (pUL56) as a novel BAG3 interactor by co-immunoprecipitation and co-localization analyses. The overexpression of pUL56 induced a significant degradation of BAG3 at protein level via the lysosome pathway. The C-terminal mutations of 181L/A, 185L/A, or 181L/A-185L/A in pUL56 resulted in a deficiency in pUL56-induced BAG3 degradation. In addition, the pUL56 C-terminal mutants that lost Golgi retention abrogated pUL56-induced BAG3 degradation, which indicates a Golgi retention-dependent manner. Strikingly, BAG3 was not observed to be degraded in either wild-type or UL56-deleted PRV infected cells as compared to mock infected ones, whereas the additional two adjacent BAG3 cleaved products were found in the infected cells in a species-specific manner. Overexpression of BAG3 significantly suppressed PRV proliferation, while knockdown of BAG3 resulted in increased viral yields in HEK293T cells. Thus, these data indicated a negative regulation role of BAG3 during PRV lytic infection. Collectively, our findings revealed a novel molecular mechanism on host protein degradation induced by PRV pUL56. Moreover, we identified BAG3 as a host restricted protein during PRV lytic infection in cells.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Herpesvirus Suido 1/fisiología , Interacciones Huésped-Patógeno , Dominios y Motivos de Interacción de Proteínas , Proteínas Estructurales Virales/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Aparato de Golgi/metabolismo , Lisosomas/metabolismo , Modelos Biológicos , Unión Proteica , Transporte de Proteínas , Proteolisis , Seudorrabia/metabolismo , Seudorrabia/virología , Especificidad de la Especie , Proteínas Estructurales Virales/químicaRESUMEN
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) possesses greater replicative capacity and pathogenicity than classical PRRSV. However, the factors that lead to enhanced replication and pathogenicity remain unclear. In our study, an alignment of all available full-length sequences of North American-type PRRSVs (n = 204) revealed two consistent amino acid mutations that differed between HP-PRRSV and classical PRRSV and were located at positions 519 and 544 in nonstructural protein 9. Next, a series of mutant viruses with either single or double amino acid replacements were generated from HP-PRRSV HuN4 and classical PRRSV CH-1a infectious cDNA clones. Deletion of either of the amino acids led to a complete loss of virus viability. In both Marc-145 and porcine alveolar macrophages, the replicative efficiencies of mutant viruses based on HuN4 were reduced compared to the parent, whereas the replication level of CH-1a-derived mutant viruses was increased. Plaque growth assays showed clear differences between mutant and parental viruses. In infected piglets, the pathogenicity of HuN4-derived mutant viruses, assessed through clinical symptoms, viral load in sera, histopathology examination, and thymus atrophy, was reduced. Our results indicate that the amino acids at positions 519 and 544 in NSP9 are involved in the replication efficiency of HP-PRRSV and contribute to enhanced pathogenicity. This study is the first to identify specific amino acids involved in PRRSV replication or pathogenicity. These findings will contribute to understanding the molecular mechanisms of PRRSV replication and pathogenicity, leading to better therapeutic and prognostic options to combat the virus.IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS), caused by porcine reproductive and respiratory syndrome virus (PRRSV), is a significant threat to the global pig industry. Highly pathogenic PRRSV (HP-PRRSV) first emerged in China in 2006 and has subsequently spread across Asia, causing considerable damage to local economies. HP-PRRSV strains possess a greater replication capacity and higher pathogenicity than classical PRRSV strains, although the mechanisms that underlie these characteristics are unclear. In the present study, we identified two mutations in HP-PRRSV strains that distinguish them from classical PRRSV strains. Further experiments that swapped the two mutations in an HP-PRRSV strain and a classical PRRSV strain demonstrated that they are involved in the replication efficiency of the virus and its virulence. Our findings have important implications for understanding the molecular mechanisms of PRRSV replication and pathogenicity and also provide new avenues of research for the study of other viruses.
Asunto(s)
Mutación Missense , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Proteínas no Estructurales Virales , Replicación Viral/genética , Sustitución de Aminoácidos , Animales , Línea Celular , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/patología , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Porcinos , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismoRESUMEN
Several groups have used CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) for DNA virus editing. In most cases, one single-guide RNA (sgRNA) is used, which produces inconsistencies in gene editing. In this study, we used a swine herpesvirus, pseudorabies virus, as a model to systematically explore the application of CRISPR/Cas9 in DNA virus editing. In our current report, we demonstrated that cotransfection of 2 sgRNAs and a viral genome resulted in significantly better knockout efficiency than the transfection-infection-based approach. This method could result in 100% knockout of ≤3500 bp of viral nonessential large fragments. Furthermore, knockin efficiency was significantly improved by using 2 sgRNAs and was also correlated with the number of background viruses. We also demonstrated that the background viruses were all 2-sgRNA-mediated knockout mutants. Finally, this study demonstrated that the efficacy of gene knockin is determined by the replicative kinetics of background viruses. We propose that CRISPR/Cas9 coupled with 2 sgRNAs creates a powerful tool for DNA virus editing and offers great potential for future applications.-Tang, Y.-D., Guo, J.-C., Wang, T.-Y., Zhao, K., Liu, J.-T., Gao, J.-C., Tian, Z.-J., An, T.-Q., Cai, X.-H. CRISPR/Cas9-mediated 2-sgRNA cleavage facilitates pseudorabies virus editing.
Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Virus ADN/genética , ARN Guía de Kinetoplastida/genética , Animales , Línea Celular , Chlorocebus aethiops , Edición Génica/métodos , Técnicas de Inactivación de Genes/métodos , Genoma Viral/genética , Herpesvirus Suido 1/genética , Transfección/métodos , Células VeroRESUMEN
Different strains of porcine reproductive and respiratory syndrome virus (PRRSV) have emerged and circulated in different regions of mainland China since 1996, particularly after 2006. In 2012, NADC30-like PRRSV was first isolated in Henan Province. By 2016, it had spread to most provinces in China. In the present study, the whole genomes (excluding the poly(A) tails) of 13 newly emerged NADC30-like PRRSV strains were sequenced and analyzed. Furthermore, the pathogenicity of SD53-1603, one of the 13 PRRSV strains, was assessed. Phylogenetic analysis showed that these 13 newly emerged NADC30-like PRRSV strains, together with some reference strains, formed a new subgroup (subgroup 5), characterized by a predicted 131-amino-acid deletion in the nonstructural protein (NSP) 2. However, low levels of whole-genome similarity and a wide variety of recombination patterns complicated the classification of the NADC30-like PRRSV isolates. Interestingly, almost all of the recombination breakpoints found in these 13 PRRSV isolates and other NADC30-like PRRSV isolates occurred in genes encoding NSPs and/or minor structural proteins. In addition, piglets infected with the newly emerged NADC30-like strain SD53-1603 displayed clear clinical respiratory symptoms and underwent typical pathological changes. The findings may be useful for elucidating the characteristics and epidemic status of NADC30-like PRRSV in China.
Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/aislamiento & purificación , Animales , China/epidemiología , Genoma Viral , Filogenia , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/clasificación , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Recombinación Genética , Eliminación de Secuencia , Porcinos , Proteínas no Estructurales Virales/genéticaRESUMEN
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important globally distributed and highly contagious pathogen that has restricted cell tropism in vivo and in vitro. In the present study, we found that annexin A2 (ANXA2) is upregulated expressed in porcine alveolar macrophages infected with PRRSV. Additionally, PRRSV replication was significantly suppressed after reducing ANXA2 expression in Marc-145 cells using siRNA. Bioinformatics analysis indicated that ANXA2 may be relevant to vimentin, a cellular cytoskeleton component that is thought to be involved in the infectivity and replication of PRRSV. Co-immunoprecipitation assays and confocal analysis confirmed that ANXA2 interacts with vimentin, with further experiments indicating that the B domain (109-174 aa) of ANXA2 contributes to this interaction. Importantly, neither ANXA2 nor vimentin alone could bind to PRRSV and only in the presence of ANXA2 could vimentin interact with the N protein of PRRSV. No binding to the GP2, GP3, GP5, nor M proteins of PRRSV was observed. In conclusion, ANXA2 can interact with vimentin and enhance PRRSV growth. This contributes to the regulation of PRRSV replication in infected cells and may have implications for the future antiviral strategies.
Asunto(s)
Anexina A2/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Vimentina/metabolismo , Replicación Viral , Animales , Unión Proteica , PorcinosRESUMEN
In the original publication of this article [1], the author found the brand of vimentin antibody was wrong in Fig. 3. The legend of Fig. 3, 'mouse anti-vimentin mAb (Cell Signaling Technology) at 4 °C overnight' should be 'mouse anti-vimentin mAb (Sigma-Aldrich) at 4 °C overnight'.
RESUMEN
Pseudorabies virus (PRV) is a neurotropic virus with the ability to infect peripheral sensory ganglia. The transport of PRV from the peripheral to the central nervous system can cause lethal encephalitis in young piglets. However, the pathogenicity of PRV in the cerebral cortex remains poorly understood. In the present study, we developed a porcine cerebral cortex primary culture system (PCCS) using cerebral cortex tissue dissected from a 3-day-old piglet to investigate the pathogenicity of wild-type (WT) and US2 deleted (ΔUS2) PRV in the CNS in vitro. Immunofluorescence assays revealed cell bodies and neurites as the cellular locations infected by PRV. Growth kinetic analysis showed a persistent increase in WT and ΔUS2 viral titers in PCCS from 4 to 24 h post infection (hpi), thus indicating that US2 deletion did not disrupt viral growth. However, the mean plaque size was significantly higher in ΔUS2 PRV than in WT PRV in infected Vero cells. The viral titers and DNA levels of ΔUS2 PRV were significantly higher at 8 hpi than at 4 hpi, whereas those of WT showed no significant difference between the two time points in PCCS. Morphological investigation revealed induction of massive amounts of bouton-like swellings (varicosities) along the axon shaft in both WT and ΔUS2 PRV-infected neurons in the PCCS. Our data suggest that PRV US2 gene deletion enhances viral titers in PCCS but does not affect the varicosities induced by the viral infection.
Asunto(s)
Corteza Cerebral/virología , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/patogenicidad , Técnicas de Cultivo de Tejidos , Animales , ADN Viral/biosíntesis , Eliminación de Gen , Genes Virales , Genotipo , Herpesvirus Suido 1/clasificación , Neuronas/patología , Neuronas/virología , Filogenia , Porcinos , Virulencia/genética , Cultivo de Virus/métodosRESUMEN
BACKGROUND: Classical swine fever (CSF) is one of the most devastating and highly contagious viral diseases in the world. Since late 2014, outbreaks of a new sub-genotype 2.1d CSF virus (CSFV) had caused substantial economic losses in numbers of C-strain vaccinated swine farms in China. The objective of the present study was to explore the genomic characteristics and pathogenicity of the newly emerged CSFV isolates in China during 2014-2015. RESULTS: All the new 8 CSFV isolates belonged to genetic sub-genotype 2.1d. Some genomic variations or deletions were found in the UTRs and E2 of these new isolates. In addition, the pathogenicity of HLJ1 was less than Shimen, suggesting the HLJ1 of sub-genotype 2.1d may be a moderated pathogenic isolate and the C-strain vaccine can supply complete protection. CONCLUSIONS: The new CSFV isolates with unique genomic characteristics and moderate pathogenicity can be epidemic in many large-scale C-strain vaccinated swine farms. This study provides the information should be merited special attention on establishing prevention and control policies for CSF.
Asunto(s)
Virus de la Fiebre Porcina Clásica/genética , Peste Porcina Clásica/microbiología , Genoma Viral/genética , Animales , China/epidemiología , Peste Porcina Clásica/epidemiología , Peste Porcina Clásica/patología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades Transmisibles Emergentes/virología , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Análisis de Secuencia de ADN/veterinaria , PorcinosRESUMEN
BACKGROUND: The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) continues to pose one of the greatest threats to the swine industry. M protein is the most conserved and important structural protein of PRRSV. However, information about the host cellular proteins that interact with M protein remains limited. METHODS: Host cellular proteins that interact with the M protein of HP-PRRSV were immunoprecipitated from MARC-145 cells infected with PRRSV HuN4-F112 using the M monoclonal antibody (mAb). The differentially expressed proteins were identified by LC-MS/MS. The screened proteins were used for bioinformatics analysis including Gene Ontology, the interaction network, and the enriched KEGG pathways. Some interested cellular proteins were validated to interact with M protein by CO-IP. RESULTS: The PRRSV HuN4-F112 infection group had 10 bands compared with the control group. The bands included 219 non-redundant cellular proteins that interact with M protein, which were identified by LC-MS/MS with high confidence. The gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway bioinformatic analyses indicated that the identified proteins could be assigned to several different subcellular locations and functional classes. Functional analysis of the interactome profile highlighted cellular pathways associated with protein translation, infectious disease, and signal transduction. Two interested cellular proteins-nuclear factor of activated T cells 45 kDa (NF45) and proliferating cell nuclear antigen (PCNA)-that could interact with M protein were validated by Co-IP and confocal analyses. CONCLUSIONS: The interactome data between PRRSV M protein and cellular proteins were identified and contribute to the understanding of the roles of M protein in the replication and pathogenesis of PRRSV. The interactome of M protein will aid studies of virus/host interactions and provide means to decrease the threat of PRRSV to the swine industry in the future.
Asunto(s)
Interacciones Huésped-Patógeno , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Mapeo de Interacción de Proteínas , Proteínas de la Matriz Viral/metabolismo , Animales , Línea Celular , Cromatografía Liquida , Haplorrinos , Inmunoprecipitación , Porcinos , Espectrometría de Masas en TándemRESUMEN
BACKGROUND: Currently, porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important viral pathogens in swine in most countries, especially China. Two PRRSV attenuated live vaccine strains (HuN4-F112 and CH-1R) are currently widely used in China. Our previous study showed that HuN4-F112, but not CH-1R, induced high anti-nucleocapsid (N) antibody and neutralizing antibody (NA) titers. Additionally, sera from HuN4-F112 inoculated pigs induced low cross neutralization of CH-1R. METHODS: In the present study, 6 chimeric viruses through exchanging 5' untranslated region (UTR) + open reading frame (ORF)1a, ORF1b, and ORF2-7 + 3'UTR between HuN4-F112 and CH-1R were constructed and rescued based on the infectious clones of rHuN4-F112 and rCH-1R. The characteristics of these viruses were investigated in vitro and vivo. RESULTS: All the three fragments, 5'UTR + ORF1a, ORF1b, and ORF2-7 + 3'UTR, could affect the replication efficiencies of rHuN4-F112 and rCH-1R in vitro. Additionally, both 5'UTR + ORF1a and ORF2-7 + 3'UTR affected the anti-N antibody and NA responses targeting rHuN4-F112 and rCH-1R in piglets. CONCLUSIONS: The 5'UTR + ORF1a region of HuN4-F112 played a key role in inducing NAs in piglets. Furthermore, we confirmed for the first time that ORF1a contains a neutralization region. This study provides important information that can be used for further study of the generation of anti-PRRSV NAs.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Sistemas de Lectura Abierta/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Vacunas Atenuadas/uso terapéutico , Animales , Anticuerpos Antivirales/sangre , Secuencia de Bases , Línea Celular , China , ADN Complementario , ADN Viral , Cinética , Sistemas de Lectura Abierta/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/crecimiento & desarrollo , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Porcinos/inmunología , Vacunación , Vacunas Atenuadas/genética , Vacunas Atenuadas/aislamiento & purificación , Vacunas Virales/inmunología , Viremia/virologíaRESUMEN
Pseudorabies virus (PRV) is a swine herpesvirus that causes significant morbidity and mortality in swine populations and has caused huge economic losses in the worldwide swine industry. Currently, there is no effective antiviral drug in clinical use for PRV infection; it is also difficult to eliminate PRV from infected swine. In our study, we set out to combat these swine herpesvirus infections by exploiting the CRISPR/Cas9 system. We designed 75 single guide RNAs (sgRNA) by targeting both essential and non-essential genes across the genome of PRV. We applied a firefly luciferase-tagged reporter PRV virus for high-throughput sgRNA screening and found that most of the sgRNAs significantly inhibited PRV replication. More importantly, using a transfection assay, we demonstrated that simultaneous targeting of PRV with multiple sgRNAs completely abolished the production of infectious viruses in cells. These data suggest that CRISPR/Cas9 could be a novel therapeutic agent against PRV in the future.