Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Chem Biol ; 17(10): 1065-1074, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34168367

RESUMEN

The clinical benefits of pan-mTOR active-site inhibitors are limited by toxicity and relief of feedback inhibition of receptor expression. To address these limitations, we designed a series of compounds that selectively inhibit mTORC1 and not mTORC2. These 'bi-steric inhibitors' comprise a rapamycin-like core moiety covalently linked to an mTOR active-site inhibitor. Structural modification of these components modulated their affinities for their binding sites on mTOR and the selectivity of the bi-steric compound. mTORC1-selective compounds potently inhibited 4EBP1 phosphorylation and caused regressions of breast cancer xenografts. Inhibition of 4EBP1 phosphorylation was sufficient to block cancer cell growth and was necessary for maximal antitumor activity. At mTORC1-selective doses, these compounds do not alter glucose tolerance, nor do they relieve AKT-dependent feedback inhibition of HER3. Thus, in preclinical models, selective inhibitors of mTORC1 potently inhibit tumor growth while causing less toxicity and receptor reactivation as compared to pan-mTOR inhibitors.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Diseño de Fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Relación Estructura-Actividad
4.
Proc Natl Acad Sci U S A ; 112(51): E7065-72, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26644568

RESUMEN

Mutants of Lactobacillus kefir short-chain alcohol dehydrogenase, used here as ketoreductases (KREDs), enantioselectively reduce the pharmaceutically relevant substrates 3-thiacyclopentanone and 3-oxacyclopentanone. These substrates differ by only the heteroatom (S or O) in the ring, but the KRED mutants reduce them with different enantioselectivities. Kinetic studies show that these enzymes are more efficient with 3-thiacyclopentanone than with 3-oxacyclopentanone. X-ray crystal structures of apo- and NADP(+)-bound selected mutants show that the substrate-binding loop conformational preferences are modified by these mutations. Quantum mechanical calculations and molecular dynamics (MD) simulations are used to investigate the mechanism of reduction by the enzyme. We have developed an MD-based method for studying the diastereomeric transition state complexes and rationalize different enantiomeric ratios. This method, which probes the stability of the catalytic arrangement within the theozyme, shows a correlation between the relative fractions of catalytically competent poses for the enantiomeric reductions and the experimental enantiomeric ratio. Some mutations, such as A94F and Y190F, induce conformational changes in the active site that enlarge the small binding pocket, facilitating accommodation of the larger S atom in this region and enhancing S-selectivity with 3-thiacyclopentanone. In contrast, in the E145S mutant and the final variant evolved for large-scale production of the intermediate for the antibiotic sulopenem, R-selectivity is promoted by shrinking the small binding pocket, thereby destabilizing the pro-S orientation.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/química , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico/genética , Cristalografía por Rayos X , Evolución Molecular Dirigida , Estabilidad de Enzimas , Cinética , Lactobacillus/enzimología , Lactobacillus/genética , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Teoría Cuántica , Estereoisomerismo , Especificidad por Sustrato
5.
J Biol Chem ; 288(5): 3163-73, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23243312

RESUMEN

Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [(13)C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Biocatálisis , Vías Biosintéticas , Sesquiterpenos/metabolismo , Valeriana/enzimología , Vías Biosintéticas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hidrocarburos/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sesquiterpenos/química , Especificidad por Sustrato , Valeriana/genética
6.
J Am Chem Soc ; 134(44): 18181-4, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23102024

RESUMEN

GilOII has been unambiguously identified as the key enzyme performing the crucial C-C bond cleavage reaction responsible for the unique rearrangement of a benz[a]anthracene skeleton to the benzo[d]naphthopyranone backbone typical of the gilvocarcin-type natural anticancer antibiotics. Further investigations of this enzyme led to the isolation of a hydroxyoxepinone intermediate, leading to important conclusions regarding the cleavage mechanism.


Asunto(s)
Antibióticos Antineoplásicos/metabolismo , Cumarinas/metabolismo , Glicósidos/metabolismo , Isoquinolinas/metabolismo , Naftoquinonas/metabolismo , Streptomyces/metabolismo , Antibióticos Antineoplásicos/química , Cumarinas/química , Glicósidos/química , Isoquinolinas/química , Naftoquinonas/química , Streptomyces/química , Streptomyces/enzimología
7.
J Am Chem Soc ; 134(30): 12402-5, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22800463

RESUMEN

Two enzymes of the gilvocarcin biosynthetic pathway, GilMT and GilM, with unclear functions were investigated by in vitro studies using purified, recombinant enzymes along with synthetically prepared intermediates. The studies revealed GilMT as a typical S-adenosylmethionine (SAM) dependent O-methyltransferase, but GilM was identified as a pivotal enzyme in the pathway that exhibits dual functionality in that it catalyzes a reduction of a quinone intermediate to a hydroquinone, which goes hand-in-hand with a stabilizing O-methylation and a hemiacetal formation. GilM mediates its reductive catalysis through the aid of GilR that provides FADH(2) for the GilM reaction, through which FAD is regenerated for the next catalytic cycle. This unusual synergy eventually completes the biosynthesis of the polyketide-derived defuco-gilvocarcin chromphore.


Asunto(s)
Antibióticos Antineoplásicos/metabolismo , Cumarinas/metabolismo , Glicósidos/metabolismo , Metiltransferasas/metabolismo , Streptomyces/enzimología , Antibióticos Antineoplásicos/química , Cumarinas/química , Glicósidos/química , Glicósidos/genética , Metilación , Metiltransferasas/genética , Oxidación-Reducción , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Streptomyces/química , Streptomyces/genética , Streptomyces/metabolismo
8.
J Am Chem Soc ; 134(45): 18514-7, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23110675

RESUMEN

The lipopeptidyl nucleoside antibiotics represented by A-90289, caprazamycin, and muraymycin are structurally highlighted by a nucleoside core that contains a nonproteinogenic ß-hydroxy-α-amino acid named 5'-C-glycyluridine (GlyU). Bioinformatic analysis of the biosynthetic gene clusters revealed a shared open reading frame encoding a protein with sequence similarity to serine hydroxymethyltransferases, resulting in the proposal that this shared enzyme catalyzes an aldol-type condensation with glycine and uridine-5'-aldehyde to furnish GlyU. Using LipK involved in A-90289 biosynthesis as a model, we now functionally assign and characterize the enzyme responsible for the C-C bond-forming event during GlyU biosynthesis as an l-threonine:uridine-5'-aldehyde transaldolase. Biochemical analysis revealed this transformation is dependent upon pyridoxal-5'-phosphate, the enzyme has no activity with alternative amino acids, such as glycine or serine, as aldol donors, and acetaldehyde is a coproduct. Structural characterization of the enzyme product is consistent with stereochemical assignment as the threo diastereomer (5'S,6'S)-GlyU. Thus this enzyme orchestrates C-C bond breaking and formation with concomitant installation of two stereocenters to make a new l-α-amino acid with a nucleoside side chain.


Asunto(s)
Aldehídos/metabolismo , Antibacterianos/biosíntesis , Nucleósidos/metabolismo , Treonina/metabolismo , Transaldolasa/metabolismo , Uridina/metabolismo , Antibacterianos/química , Biocatálisis , Biología Computacional , Conformación Molecular , Nucleósidos/química
9.
Nat Prod Rep ; 29(2): 264-325, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22186970

RESUMEN

Covering: 1997 to 2010. The angucycline group is the largest group of type II PKS-engineered natural products, rich in biological activities and chemical scaffolds. This stimulated synthetic creativity and biosynthetic inquisitiveness. The synthetic studies used five different strategies, involving Diels-Alder reactions, nucleophilic additions, electrophilic additions, transition-metal mediated cross-couplings and intramolecular cyclizations to generate the angucycline frames. Biosynthetic studies were particularly intriguing when unusual framework rearrangements by post-PKS tailoring oxidoreductases occurred, or when unusual glycosylation reactions were involved in decorating the benz[a]anthracene-derived cores. This review follows our previous reviews, which were published in 1992 and 1997, and covers new angucycline group antibiotics published between 1997 and 2010. However, in contrast to the previous reviews, the main focus of this article is on new synthetic approaches and biosynthetic investigations, most of which were published between 1997 and 2010, but go beyond, e.g. for some biosyntheses all the way back to the 1980s, to provide the necessary context of information.


Asunto(s)
Aminoglicósidos/biosíntesis , Antraquinonas/síntesis química , Antibacterianos/biosíntesis , Antibacterianos/síntesis química , Productos Biológicos/síntesis química , Aminoglicósidos/síntesis química , Aminoglicósidos/farmacología , Antraquinonas/química , Antraquinonas/farmacología , Antibacterianos/farmacología , Productos Biológicos/farmacología , Vías Biosintéticas , Secuencia de Carbohidratos , Línea Celular Tumoral , Cumarinas/síntesis química , Cumarinas/farmacología , Glicósidos/biosíntesis , Glicósidos/síntesis química , Glicósidos/farmacología , Glicosilación , Humanos , Isoquinolinas/química , Estructura Molecular , Naftoquinonas/química , Neoplasias/tratamiento farmacológico , Policétidos/síntesis química , Policétidos/farmacología , Quinonas/química , Streptomyces , Relación Estructura-Actividad
10.
Bioorg Med Chem Lett ; 21(1): 517-9, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21129960

RESUMEN

Several derivatives of hadacidin have been developed and evaluated for activity against adenylosuccinate synthetase.


Asunto(s)
Glicina/análogos & derivados , Adenilosuccinato Sintasa/antagonistas & inhibidores , Adenilosuccinato Sintasa/metabolismo , Glicina/síntesis química , Glicina/química , Glicina/farmacología , Penicillium/metabolismo
11.
ChemMedChem ; 15(23): 2269-2272, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-32779344

RESUMEN

Many cancers lack the expression of methylthioadenosine phosphorylase (MTAP). These cancers require adenylosuccinate synthetase (AdSS) for nucleic acid synthesis. By inhibiting adenylosuccinate synthetase, we potentially have a new therapeutic agent. Bisubstrate inhibitors were synthesized and evaluated against purified AdSS. The best activity was obtained with adenosine bearing a four-carbon linker that connects the N-formyl-N-hydroxy moiety to the 6-position of the purine nucleoside.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Nucleósidos de Purina/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Nucleósidos de Purina/síntesis química , Nucleósidos de Purina/química , Purina-Nucleósido Fosforilasa
12.
ACS Infect Dis ; 2(9): 651-663, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27759389

RESUMEN

Opportunistic fungal pathogens such as Cryptococcus neoformans are a growing cause of morbidity and mortality among immunocompromised populations worldwide. To address the current paucity of antifungal therapeutic agents, further research into fungal-specific drug targets is required. Adenylosuccinate synthetase (AdSS) is a crucial enzyme in the adeosine triphosphate (ATP) biosynthetic pathway, catalyzing the formation of adenylosuccinate from inosine monophosphate and aspartate. We have investigated the potential of this enzyme as an antifungal drug target, finding that loss of function results in adenine auxotrophy in C. neoformans, as well as complete loss of virulence in a murine model. Cryptococcal AdSS was expressed and purified in Escherichia coli and the enzyme's crystal structure determined, the first example of a structure of this enzyme from fungi. Together with enzyme kinetic studies, this structural information enabled comparison of the fungal enzyme with the human orthologue and revealed species-specific differences potentially exploitable via rational drug design. These results validate AdSS as a promising antifungal drug target and lay a foundation for future in silico and in vitro screens for novel antifungal compounds.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Criptococosis/microbiología , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidad , Adenilosuccinato Sintasa/química , Adenilosuccinato Sintasa/genética , Adenilosuccinato Sintasa/metabolismo , Animales , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/genética , Femenino , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Cinética , Ratones , Ratones Endogámicos BALB C , Virulencia
13.
Annu Rev Chem Biomol Eng ; 5: 347-66, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24910918

RESUMEN

Natural products are important sources of pharmaceuticals, in part owing to their diverse biological activities. Enzymes from natural product biosynthetic pathways have become attractive candidates as biocatalysts for modifying the structures and bioactivities of these complex compounds. Numerous enzymes have been harvested to generate innovative scaffolds, large-scale synthesis of chiral building blocks, and semisynthesis of medicinally relevant natural product derivatives. This review discusses recent examples from three areas: (a) polyketide catalytic domain engineering geared toward synthesis of new polyketides, (b) engineering of tailoring enzymes (other than oxidative enzymes) as biocatalysts, and (c) in vitro total synthesis of natural products using purified enzyme components. With the availability of exponentially increasing genomic information and new genome mining tools, many new and powerful biocatalysts tailored for pharmaceutical synthesis will likely emerge from secondary metabolism.


Asunto(s)
Productos Biológicos/metabolismo , Vías Biosintéticas , Enzimas/metabolismo , Policétidos/metabolismo , Biocatálisis , Productos Biológicos/química , Enzimas/química , Estructura Molecular , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Policétidos/química , Tecnología Farmacéutica/métodos
14.
Medchemcomm ; 4(1): 239-243, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23476724

RESUMEN

Muraminomicin is a lipopeptidyl nucleoside antibiotic produced by Streptosporangium amethystogenes SANK 60709. Similar to several members of this antibiotic family such as A-90289 and muraymycin, the structure of muraminomicin consists of a disaccharide comprised of two modified ribofuranose units linked by an O-ß(1 → 5) glycosidic bond; however, muraminomicin holds the distinction in that both ribose units are 2-deoxy sugars. The biosynthetic gene cluster of muraminomicin has been identified, cloned and sequenced, and bioinformatic analysis revealed a minimum of 24 open reading frames putatively involved in the biosynthesis, resistance, and regulation of muraminomicin. Fives enzymes are likely involved in the assembly and attachment of the 2,5-dideoxy-5-aminoribose saccharide unit, and two are now functionally assigned and characterized: Mra20, a 5'-amino-2',5'-dideoxyuridine phosphorylase and Mra23, a UTP:5-amino-2,5-dideoxy-α-D-ribose-1-phosphate uridylyltransferase. The cumulative results are consistent with the incorporation of the ribosyl appendage of muraminomicin via the archetypical sugar biosynthetic pathway that parallels A-90289 biosynthesis, and the specificity for this appendage is dictated primarily by the two characterized enzymes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA