Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Phys Chem Chem Phys ; 22(27): 15567-15572, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32613218

RESUMEN

A series of phycobilin analogues have been investigated in terms of coupled excitonic systems. These compounds consist of a monomer, a tetrapyrrole structurally similar to bilirubin (bR), and two conjugated bR analogues. Spectroscopic and computational methods have been used to investigate the degree of interchromophore coupling. We find the synthesised bR analogue shows stronger excitonic coupling than bR, owing to a different molecular geometry. The excitonic coupling in the conjugated molecules can be controlled by modifying the bridge side-group. New computed energy levels for bR using the DFT/MRCI method are also presented, which improve on published values and re-assign the character of excited singlet states.


Asunto(s)
Antioxidantes/química , Bilirrubina/química , Teoría Funcional de la Densidad , Antioxidantes/síntesis química , Bilirrubina/análogos & derivados , Bilirrubina/síntesis química , Estructura Molecular , Electricidad Estática
2.
J Org Chem ; 82(23): 12337-12345, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29072453

RESUMEN

Thionated naphthalene diimides (NDIs) are promising materials for n-type organic semiconductors; despite their potential, synthetic routes to thionated NDIs are generally lengthy, nonselective, and low yielding and their polymeric analogues have yet to be reported in the literature. Here, we describe the rapid and selective thionation of thiophene- and selenophene-flanked NDIs using microwave irradiation and excess Lawesson's reagent. Remarkably, >99% conversion to the trans-dithionated product is observed by NMR within 45 min. Steric effects imparted by NDI core substituents prevent excess thionation, simplifying purification procedures. We apply this methodology to the postpolymerization thionation of NDI-based polymers to afford a series of polymers with varying degrees of thionation. Thionated NDIs exhibit bathochromic shifts of up to ∼100 nm in localized absorption maxima and increased electron affinities.

3.
J Org Chem ; 81(21): 10444-10453, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27513290

RESUMEN

Boratriazaroles were discovered in the late 1960s, and since then, a variety of substituted boratriazarole derivatives have been prepared. However, no study has compared the properties of these BN heterocycles with their carbon-based analogues. In this work, we have prepared a series of boratriazarole derivatives and have investigated how structural variations in the five-member heterocycle affect photophysical and electronic properties. Boratriazaroles exhibit absorption and emission spectra comparable to those of their azacycle analogues but have a markedly lower quantum yield. The quantum yield can be increased with the incorporation of a 2-pyridyl substitution on the boratriazaroles, and the structural and optoelectronic properties are further influenced by the nature of the B-aryl substituent. Introducing an electron-deficient p-cyano group on the B-phenyl substituent creates a twisted intramolecular charge transfer state that causes a large Stokes shift and positive solvatochromism. Our work should serve to guide future synthetic efforts toward the application of boratriazaroles in materials science.

4.
J Am Chem Soc ; 137(21): 6790-803, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25946670

RESUMEN

We compare the singlet fission dynamics of five pentacene derivatives precipitated to form nanoparticles. Two nanoparticle types were distinguished by differences in their solid-state order and kinetics of triplet formation. Nanoparticles that comprise primarily weakly coupled chromophores lack the bulk structural order of the single crystal and exhibit nonexponential triplet formation kinetics (Type I), while nanoparticles that comprise primarily more strongly coupled chromophores exhibit order resembling that of the bulk crystal and triplet formation kinetics associated with the intrinsic singlet fission rates (Type II). In the highly ordered nanoparticles, singlet fission occurs most rapidly. We relate the molecular packing arrangement derived from the crystal structure of the pentacene derivatives to their singlet fission dynamics and find that slip stacking leads to rapid, subpicosecond singlet fission. We present evidence that exciton delocalization, coincident with an increased relative admixture of charge-transfer configurations in the description of the exciton wave function, facilitates rapid triplet pair formation in the case of single-step singlet fission. We extend the study to include two hexacene derivatives and find that these conclusions are generally applicable. This work highlights acene derivatives as versatile singlet fission chromophores and shows how chemical functionalization affects both solid-state order and exciton interactions and how these attributes in turn affect the rate of singlet fission.

5.
Bioorg Med Chem ; 20(7): 2353-61, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22377671

RESUMEN

Isoflavone consumption correlates with reduced rates of cardiovascular disease. Epidemiological studies and clinical data provide evidence that isoflavone metabolites, such as the isoflavan equol, contribute to these beneficial effects. In this study we developed a new route to isoflavans and isoflavenes via 2-morpholinoisoflavenes derived from a condensation reaction of phenylacetaldehydes, salicylaldehydes and morpholine. We report the synthesis of the isoflavans equol and deoxygenated analogues, and the isoflavenes 7,4'-dihydroxyisoflav-3-ene (phenoxodiol, haganin E) and 7,4'-dihydroxyisoflav-2-ene (isophenoxodiol). Vascular pharmacology studies reveal that all oxygenated isoflavans and isoflavenes can attenuate phenylephrine-induced vasoconstriction, which was unaffected by the estrogen receptor antagonist ICI 182,780. Furthermore, the compounds inhibited U46619 (a thromboxane A(2) analogue) induced vasoconstriction in endothelium-denuded rat aortae, and reduced the formation of GTP RhoA, with the effects being greatest for equol and phenoxodiol. Ligand displacement studies of rat uterine cytosol estrogen receptor revealed the compounds to be generally weak binders. These data are consistent with the vasorelaxation activity of equol and phenoxodiol deriving at least in part by inhibition of the RhoA/Rho-kinase pathway, and along with the limited estrogen receptor affinity supports a role for equol and phenoxodiol as useful agents for maintaining cardiovascular function with limited estrogenic effects.


Asunto(s)
Equol/análogos & derivados , Isoflavonas/química , Inhibidores de Proteínas Quinasas/síntesis química , Receptores de Estrógenos/química , Vasodilatadores/síntesis química , Quinasas Asociadas a rho/antagonistas & inhibidores , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/toxicidad , Animales , Equol/síntesis química , Equol/farmacología , Isoflavonas/síntesis química , Isoflavonas/farmacología , Masculino , Morfolinas/química , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/metabolismo , Vasoconstricción/efectos de los fármacos , Vasodilatadores/química , Vasodilatadores/farmacología , Quinasas Asociadas a rho/metabolismo
6.
J Org Chem ; 76(9): 3372-80, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21452881

RESUMEN

Trimer, tetramer, and pentamer oligomers based on the polymer backbone structure of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) have been synthesized by Horner-Wadsworth-Emmons reactions. The fluorescence spectra, emission quantum yields, and lifetimes of the oligomers have been characterized in dilute chloroform solutions. The oligomers exhibit a sequential increase in absorption and emission wavelength maxima and a decrease in fluorescence lifetime as the π conjugation length is increased. The shortening in excited state lifetime is shown to be due to an increase in the rates of both radiative and nonradiative processes. The absence of a mirror-image relationship for the absorption and fluorescence spectra of the oligomers is attributed to the photoexcitation of a range of torsional configurations followed by relaxation to a more planar arrangement that then emits.

7.
ACS Appl Mater Interfaces ; 11(2): 1739-1747, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30614678

RESUMEN

Microporous polymers using triptycene vertices and various ladder-type benzimidazole linkers are synthesized and tested as lithium-ion battery anodes. An unusual increase in performance is observed upon cycling, affording high capacities of 783 and 737 mAh g-1 for a perylene derivative and the pyromellitic derivative after 1000 cycles. The high performance of these materials after cycling is attributed to favorable electrode morphology and high crystallinity for perylene derivative, and the presence of charge carriers for pyromellitic derivative. By studying the effect of various linkers on the electrochemical performance, structure-property relationships are proposed that can be used to guide the development of high-performance materials for lithium-ion batteries.

8.
Chempluschem ; 84(6): 746-753, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31944010

RESUMEN

A series of tetraphenylethene 9,10-diphenylanthracene (TPE-DPA) derivatives have been synthesized, and their photophysical properties studied. Photoluminescence measurements in PMMA, neat films and nanoparticle dispersions reveal that different aggregation states are formed, which leads to different photophysical behavior. The triplet excited state properties were studied using Pt(II) octaethylporphyrin (PtOEP) as triplet sensitizer. Upconverted emission from the DPA moiety is observed in nanoparticle dispersions of each derivative. A higher upconverted emission intensity is observed in aerated (compared to deaerated) solutions of the derivatives following irradiation, which is attributed to oxidation of the TPE moiety. These results provide valuable insight for the design of AIE luminogens for triplet-triplet annihilation upconversion (TTA-UC).

9.
Brain Res Bull ; 75(5): 610-8, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18355637

RESUMEN

Functional brain-imaging studies of house-face binocular rivalry and Rubin's vase-faces illusion have consistently reported face perception-dependent activity in the right fusiform gyrus. Here we use Rubin's illusion and report that activation of the left hemisphere by caloric vestibular stimulation increases the predominance of the faces percept in a substantial number of test subjects. While partially supporting the brain-imaging lateralization reports, our findings also challenge these studies by suggesting that neural mechanisms of Rubin's illusion cannot be limited to extrastriate perception-dependent processing. In accordance with our previously proposed interhemispheric switch model, the present findings support the notion that perceptual rivalry engages high-level cortical structures that mediate unihemispheric attentional selection.


Asunto(s)
Cara , Ilusiones/fisiología , Reconocimiento Visual de Modelos , Visión Binocular/fisiología , Adolescente , Adulto , Atención , Mapeo Encefálico , Lateralidad Funcional , Humanos , Masculino , Estimulación Luminosa , Disparidad Visual
10.
Chem Sci ; 9(29): 6240-6259, 2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-30090312

RESUMEN

Singlet fission is a process that splits collective excitations, or excitons, into two with unity efficiency. This exciton splitting process, unique to molecular photophysics, has the potential to considerably improve the efficiency of optoelectronic devices through more efficient light harvesting. While the first step of singlet fission has been characterized in great detail, subsequent steps critical to achieving overall highly-efficient singlet-to-triplet conversion are only just beginning to become well understood. One of the most elementary suggestions, which has yet to be tested, is that an appropriately balanced coupling is necessary to ensure overall highly efficient singlet fission; that is, the coupling needs to be strong enough so that the first step is fast and efficient, yet weak enough to ensure the independent behavior of the resultant triplets. In this work, we show how high overall singlet-to-triplet conversion efficiencies can be achieved in singlet fission by ensuring that the triplets comprising the triplet pair behave as independently as possible. We show that side chain sterics govern local packing in amorphous pentacene derivative nanoparticles, and that this in turn controls both the rate at which triplet pairs form and the rate at which they decay. We show how compact side chains and stronger couplings promote a triplet pair that effectively couples to the ground state, whereas bulkier side chains promote a triplet pair that appears more like two independent and long-lived triplet excitations. Our results show that the triplet pair is not emissive, that its decay is best viewed as internal conversion rather than triplet-triplet annihilation, and perhaps most critically that, in contrast to a number of recent suggestions, the triplets comprising the initially formed triplet pair cannot be considered independently. This work represents a significant step toward better understanding intermediates in singlet fission, and how molecular packing and couplings govern overall triplet yields.

11.
Vision Res ; 47(21): 2685-99, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17719618

RESUMEN

Binocular rivalry is an extraordinary visual phenomenon that has engaged investigators for centuries. Since its first report, there has been vigorous debate over how the brain achieves the perceptual alternations that occur when conflicting images are presented simultaneously, one to each eye. Opposing high-level/stimulus-representation models and low-level/eye-based models have been proposed to explain the phenomenon, recently merging into an amalgam view. Here, we provide evidence that during viewing of Díaz-Caneja stimuli, coherence rivalry -- in which aspects of each eye's presented image are perceptually regrouped into rivalling coherent images -- and eye rivalry operate via discrete neural mechanisms. We demonstrate that high-level brain activation by unilateral caloric vestibular stimulation shifts the predominance of perceived coherent images (coherence rivalry) but not half-field images (eye rivalry). This finding suggests that coherence rivalry (like conventional rivalry according to our previous studies) is mediated by interhemispheric switching at a high level, while eye rivalry is mediated by intrahemispheric mechanisms, most likely at a low level. Based on the present data, we further propose that Díaz-Caneja stimuli induce 'meta-rivalry' whereby the discrete high- and low-level competitive processes themselves rival for visual consciousness.


Asunto(s)
Dominancia Cerebral/fisiología , Predominio Ocular/fisiología , Modelos Psicológicos , Visión Binocular/fisiología , Adolescente , Adulto , Atención , Frío , Movimientos Oculares/fisiología , Humanos , Masculino , Pruebas Neuropsicológicas , Estimulación Luminosa , Estadísticas no Paramétricas , Nervio Vestibular/fisiología , Percepción Visual/fisiología
12.
ACS Appl Mater Interfaces ; 9(18): 15631-15637, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28430407

RESUMEN

Lithium ion batteries are the best commercial technology to satisfy the energy storage needs of current and emerging applications. However, the use of transition-metal-based cathodes precludes them from being low-cost, sustainable, and environmentally benign, even with recycling programs in place. In this study, we report a highly stable organic material that can be used in place of the transition-metal cathodes. By creating a three-dimensional framework based on triptycene and perylene diimide (PDI), a cathode can be constructed that mitigates stability issues that organic electrodes typically suffer from. When a lithium ion battery is assembled using the PDI-triptycene framework (PDI-Tc) cathode, a capacity of 75.9 mAh g-1 (78.7% of the theoretical value) is obtained. Importantly, the battery retains a near perfect Coulombic efficiency and >80% of its capacity after cycling 500 times, which is the best value reported to date for PDI-based materials.

13.
J Phys Chem Lett ; 7(13): 2370-5, 2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27281713

RESUMEN

Singlet fission is an excitation multiplication process in molecular systems that can circumvent energy losses and significantly boost solar cell efficiencies; however, the nature of a critical intermediate that enables singlet fission and details of its evolution into multiple product excitations remain obscure. We resolve the initial sequence of events comprising the fission of a singlet exciton in solids of pentacene derivatives using femtosecond transient absorption spectroscopy. We propose a three-step model of singlet fission that includes two triplet-pair intermediates and show how transient spectroscopy can distinguish initially interacting triplet pairs from those that are spatially separated and noninteracting. We find that the interconversion of these two triplet-pair intermediates is limited by the rate of triplet transfer. These results clearly highlight the classical kinetic model of singlet fission and expose subtle details that promise to aid in resolving problems associated with triplet extraction.

14.
Faraday Discuss ; 177: 111-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25607832

RESUMEN

Time-resolved absorption and emission spectroscopy has been applied to investigate the dynamics of excited state processes in oligomer models for semi-conducting organic materials. Following the photo-excitation of a pentamer oligomer that is a model for the conjugated polymer MEH-PPV, an ultrafast component of a few picoseconds is observed for the decay of the initially formed transient species. Variable temperature absorption and emission spectra combined with X-ray crystallography and calculations support the assignment of this rapid relaxation process to an excited state conformational rearrangement from non-planar to more planar molecular configurations. The implications of the results for the overall photophysics of conjugated polymers are considered.


Asunto(s)
Polímeros/química , Semiconductores , Compuestos de Vinilo/química , Cristalografía por Rayos X , Conformación Molecular , Procesos Fotoquímicos , Análisis Espectral/métodos , Temperatura , Termodinámica , Factores de Tiempo
15.
Chem Commun (Camb) ; 51(25): 5475-8, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25534974

RESUMEN

A series of platinum-acetylide copolymers with thiophene, selenophene, and tellurophene have been synthesized and studied. Photoluminescence experiments show that polymers undergo intersystem crossing to triplet states, leading to phosphorescence. The observed phosphorescence decreases in intensity moving down the group. DFT calculations are used to further understand the optical properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA