Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Lipid Res ; 53(8): 1543-52, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22628618

RESUMEN

Previously, we reported that stearate, a saturated fatty acid, promotes osteoblastic differentiation and mineralization of vascular smooth muscle cells (VSMC). In this study, we examined the molecular mechanisms by which stearate promotes vascular calcification. ATF4 is a pivotal transcription factor in osteoblastogenesis and endoplasmic reticulum (ER) stress. Increased stearate by either supplementation of exogenous stearic acid or inhibition of stearoyl-CoA desaturase (SCD) by CAY10566 induced ATF4 mRNA, phosphorylated ATF4 protein, and total ATF4 protein. Induction occurred through activation of the PERK-eIF2α pathway, along with increased osteoblastic differentiation and mineralization of VSMCs. Either stearate or the SCD inhibitor but not oleate or other fatty acid treatments also increased ER stress as determined by the expression of p-eIF2α, CHOP, and the spliced form of XBP-1, which were directly correlated with ER stearate levels. ATF4 knockdown by lentiviral ATF4 shRNA blocked osteoblastic differentiation and mineralization induced by stearate and SCD inhibition. Conversely, treatment of VSMCs with an adenovirus containing ATF4 induced vascular calcification. Our results demonstrated that activation of ATF4 mediates vascular calcification induced by stearate.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Ácidos Esteáricos/farmacología , Calcificación Vascular/inducido químicamente , Calcificación Vascular/metabolismo , Factor de Transcripción Activador 4/deficiencia , Factor de Transcripción Activador 4/genética , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Ratones , Minerales/metabolismo , Músculo Liso Vascular/citología , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/efectos de los fármacos , Factor de Transcripción CHOP/metabolismo , Calcificación Vascular/patología , Calcificación Vascular/fisiopatología , eIF-2 Quinasa/genética
2.
J Biol Chem ; 286(38): 33701-6, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21835914

RESUMEN

Vascular calcification impairs vessel compliance and increases the risk of cardiovascular events. We found previously that liver X receptor agonists, which regulate intracellular cholesterol homeostasis, augment PKA agonist- or high phosphate-induced osteogenic differentiation of vascular smooth muscle cells. Because cholesterol is an integral component of the matrix vesicles that nucleate calcium mineral, we examined the role of cellular cholesterol metabolism in vascular cell mineralization. The results showed that vascular smooth muscle cells isolated from LDL receptor null (Ldlr(-/-)) mice, which have impaired cholesterol uptake, had lower levels of intracellular cholesterol and less osteogenic differentiation, as indicated by alkaline phosphatase activity and matrix mineralization, compared with WT cells. PKA activation with forskolin acutely induced genes that promote cholesterol uptake (LDL receptor) and biosynthesis (HMG-CoA reductase). In WT cells, inhibition of cholesterol uptake by lipoprotein-deficient serum attenuated forskolin-induced matrix mineralization, which was partially reversed by the addition of cell-permeable cholesterol. Prolonged activation of both uptake and biosynthesis pathways by cotreatment with a liver X receptor agonist further augmented forskolin-induced matrix mineralization. Inhibition of either cholesterol uptake, using Ldlr(-/-) cells, or of cholesterol biosynthesis, using mevastatin-treated WT cells, failed to inhibit matrix mineralization due to up-regulation of the respective compensatory pathway. Inhibition of both pathways simultaneously using mevastatin-treated Ldlr(-/-) cells did inhibit forskolin-induced matrix mineralization. Altogether, the results suggest that up-regulation of cholesterol metabolism is essential for matrix mineralization by vascular cells.


Asunto(s)
Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Calcinosis/metabolismo , Calcinosis/patología , Colesterol/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Animales , Matriz Ósea/metabolismo , Calcificación Fisiológica , Bovinos , Diferenciación Celular , Colesterol/biosíntesis , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática , Regulación de la Expresión Génica , Ratones , Osteoblastos/metabolismo , Osteoblastos/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Suero
3.
J Biol Chem ; 286(27): 23938-49, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21596756

RESUMEN

Vascular calcification is recognized as an independent predictor of cardiovascular mortality, particularly in subjects with chronic kidney disease. However, the pathways by which dysregulation of lipid and mineral metabolism simultaneously occur in this particular population remain unclear. We have shown that activation of the farnesoid X receptor (FXR) blocks mineralization of bovine calcifying vascular cells (CVCs) and in ApoE knock-out mice with 5/6 nephrectomy. In contrast to FXR, this study showed that liver X receptor (LXR) activation by LXR agonists and adenovirus-mediated LXR overexpression by VP16-LXRα and VP16-LXRß accelerated mineralization of CVCs. Conversely, LXR inhibition by dominant negative (DN) forms of LXRα and LXRß reduced calcium content in CVCs. The regulation of mineralization by FXR and LXR agonists was highly correlated with changes in lipid accumulation, fatty acid synthesis, and the expression of sterol regulatory element binding protein-1 (SREBP-1). The rate of lipogenesis in CVCs through the SREBP-1c dependent pathway was reduced by FXR activation, but increased by LXR activation. SREBP-1c overexpression augmented mineralization in CVCs, whereas SREBP-1c DN inhibited alkaline phosphatase activity and mineralization induced by LXR agonists. LXR and SREBP-1c activations increased, whereas FXR activation decreased, saturated and monounsaturated fatty acids derived from lipogenesis. In addition, we found that stearate markedly promoted mineralization of CVCs as compared with other fatty acids. Furthermore, inhibition of either acetyl-CoA carboxylase or acyl-CoA synthetase reduced mineralization of CVCs, whereas inhibition of stearoyl-CoA desaturase induced mineralization. Therefore, a stearate metabolite derived from lipogenesis might be a risk factor for the development of vascular calcification.


Asunto(s)
Vasos Sanguíneos/metabolismo , Calcinosis/metabolismo , Lipogénesis , Ácidos Esteáricos/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Vasos Sanguíneos/patología , Calcinosis/genética , Calcinosis/patología , Bovinos , Células Cultivadas , Etopósido/metabolismo , Receptores X del Hígado , Ratones , Ratones Noqueados , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
4.
Circ Res ; 106(12): 1807-17, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20431060

RESUMEN

RATIONALE: Vascular calcification is highly associated with cardiovascular morbidity and mortality, especially in patients with chronic kidney disease. The nuclear receptor farnesoid X receptor (FXR) has been implicated in the control of lipid, carbohydrate and bile acid metabolism in several cell types. Although recent studies have shown that FXR is also expressed in vascular smooth muscle cells, its physiological role in vasculature tissue remains obscure. OBJECTIVE: Here, we have examined the role of FXR in vascular calcification. METHODS AND RESULTS: The FXR gene, a bile acid nuclear receptor, was highly induced during osteogenic differentiation of bovine calcifying vascular cells (CVCs) and in the aorta of apolipoprotein (Apo)E(-/-) mice with chronic kidney disease which are common tissue culture and mouse model, respectively, for aortic calcification. FXR activation by a synthetic FXR agonist, 6alpha-ethyl chenodeoxycholic acid (INT-747) inhibited phosphate induced-mineralization and triglyceride accumulation in CVCs. FXR dominant negative expression augmented mineralization of CVCs and blocked the anticalcific effect of INT-747 whereas VP16FXR that is a constitutively active form reduced mineralization of CVCs. INT-747 treatment also increased phosphorylated c-Jun N-terminal kinase (JNK). SP600125 (specific JNK inhibitor) significantly induced mineralization of CVCs and alkaline phosphatase expression, suggesting that the anticalcific effect of INT-747 is attributable to JNK activation. We also found that INT-747 ameliorates chronic kidney disease induced-vascular calcification in 5/6 nephrectomized ApoE(-/-) mice without affecting the development of atherosclerosis. CONCLUSIONS: These observations provide direct evidence that FXR is a key signaling component in regulation of vascular osteogenic differentiation and, thus representing a promising target for the treatment of vascular calcification.


Asunto(s)
Apolipoproteínas E/fisiología , Calcinosis/fisiopatología , Enfermedades Renales/fisiopatología , Receptores Citoplasmáticos y Nucleares/fisiología , Enfermedades Vasculares/fisiopatología , Animales , Aorta/citología , Aorta/efectos de los fármacos , Aorta/metabolismo , Apolipoproteínas E/genética , Calcinosis/prevención & control , Bovinos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacología , Ácido Quenodesoxicólico/uso terapéutico , Enfermedad Crónica , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Noqueados , Osteogénesis/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Transducción de Señal/fisiología , Triglicéridos/metabolismo
5.
Cell Rep ; 29(6): 1499-1510.e6, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31693891

RESUMEN

Indisulam and related sulfonamides recruit the splicing factor RBM39 to the CRL4-DCAF15 E3 ubiquitin ligase, resulting in RBM39 ubiquitination and degradation. Here, we used a combination of domain mapping and random mutagenesis to identify domains or residues that are necessary for indisulam-dependent RBM39 ubiquitination. DCAF15 mutations at Q232 or D475 prevent RBM39 recruitment by indisulam. RBM39 is recruited to DCAF15 by its RRM2 (RNA recognition motif 2) and is ubiquitinated on its N terminus. RBM23, which is an RBM39 paralog, is also recruited to the CRL4-DCAF15 ligase through its RRM2 domain and undergoes sulfonamide-dependent degradation. Indisulam alters the expression of more than 3,000 genes and causes widespread intron retention and exon skipping. All of these changes can be attributed to RBM39, and none are the consequence of RBM23 degradation. Our findings demonstrate that indisulam selectively degrades RBM23 and RBM39, the latter of which is critically important for splicing and gene expression.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Empalme del ARN/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Sulfonamidas/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Lisina , Mutagénesis , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas con Motivos de Reconocimiento de ARN/genética , Empalme del ARN/genética , Proteínas de Unión al ARN/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética
6.
Science ; 356(6336)2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28302793

RESUMEN

Indisulam is an aryl sulfonamide drug with selective anticancer activity. Its mechanism of action and the basis for its selectivity have so far been unknown. Here we show that indisulam promotes the recruitment of RBM39 (RNA binding motif protein 39) to the CUL4-DCAF15 E3 ubiquitin ligase, leading to RBM39 polyubiquitination and proteasomal degradation. Mutations in RBM39 that prevent its recruitment to CUL4-DCAF15 increase RBM39 stability and confer resistance to indisulam's cytotoxicity. RBM39 associates with precursor messenger RNA (pre-mRNA) splicing factors, and inactivation of RBM39 by indisulam causes aberrant pre-mRNA splicing. Many cancer cell lines derived from hematopoietic and lymphoid lineages are sensitive to indisulam, and their sensitivity correlates with DCAF15 expression levels. Two other clinically tested sulfonamides, tasisulam and chloroquinoxaline sulfonamide, share the same mechanism of action as indisulam. We propose that DCAF15 expression may be a useful biomarker to guide clinical trials of this class of drugs, which we refer to as SPLAMs (splicing inhibitor sulfonamides).


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores Farmacológicos/metabolismo , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Empalme del ARN/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Sulfonamidas/farmacología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Sustitución de Aminoácidos , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Humanos , Ratones , Ratones Noqueados , Mutación , Proteínas Nucleares/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas de Unión al ARN/genética , Sulfonamidas/efectos adversos , Sulfonamidas/uso terapéutico , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Am Heart Assoc ; 2(5): e000238, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-24008080

RESUMEN

BACKGROUND: Vascular calcification is a common feature in patients with chronic kidney disease (CKD). CKD increases serum levels of tumor necrosis factor-α (TNFα), a critical mediator of vascular calcification. However, the molecular mechanism by which TNFα promotes CKD-dependent vascular calcification remains obscure. The purpose of the present study was to investigate whether TNFα-induced vascular calcification in CKD is caused by the endoplasmic reticulum response involving protein kinase RNA-like endoplasmic reticulum kinase (PERK), eukaryotic initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). METHODS AND RESULTS: We examined the effects of TNFα on the endoplasmic reticulum (ER) stress response of vascular smooth muscle cells (VSMCs). TNFα treatment drastically induced the PERK-eIF2α-ATF4-CHOP axis of the ER stress response in VSMCs. PERK, ATF4, and CHOP shRNA-mediated knockdowns drastically inhibited mineralization and osteogenesis of VSMCs induced by TNFα. CKD induced by 5/6 nephrectomies activated the PERK-eIF2α-ATF4-CHOP axis of the ER stress response in the aortas of ApoE-/- mice with increased aortic TNFα expression and vascular calcification. Treatment of 5/6 nephrectomized ApoE-/- mice with the TNFα neutralizing antibody or chemical Chaperones reduced aortic PERK-eIF2α-ATF4-CHOP signaling of the ER stress increased by CKD. This resulted in the inhibition of CKD-dependent vascular calcification. CONCLUSIONS: These results suggest that TNFα induces the PERK-eIF2α-ATF4-CHOP axis of the ER stress response, leading to CKD-dependent vascular calcification.


Asunto(s)
Factor de Transcripción Activador 4/fisiología , Estrés del Retículo Endoplásmico/fisiología , Factor de Transcripción CHOP/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Calcificación Vascular/etiología , eIF-2 Quinasa/fisiología , Animales , Células Cultivadas , Retículo Endoplásmico , Masculino , Ratones , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA