Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; : 107470, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38879012

RESUMEN

Resistance to inhibitors of cholinesterases (ric-8 proteins) are involved in modulating G-protein function but little is known of their potential physiological importance in the heart. In the present study, we assessed the role of resistance to inhibitors of cholinesterase 8b (Ric-8b) in determining cardiac contractile function. We developed a murine model in which it was possible to conditionally delete ric-8b in cardiac tissue in the adult animal after the addition of tamoxifen. Deletion of ric-8b led to severely reduced contractility as measured using echocardiography days after administration of tamoxifen. Histological analysis of the ventricular tissue showed highly variable myocyte size, prominent fibrosis and an increase in cellular apoptosis. RNA sequencing revealed transcriptional remodelling in response to cardiac ric-8b deletion involving the extracellular matrix and inflammation. Phosphoproteomic analysis revealed substantial downregulation of phosphopeptides related to myosin light chain 2. At the cellular level, the deletion of ric-8b led to loss of activation of the L-type calcium channel through the ß-adrenergic pathways. Using fluorescence resonance energy transfer-based assays we showed ric-8b protein selectively interacts with the stimulatory G-protein, Gαs. We explored if deletion of Gnas (the gene encoding Gαs) in cardiac tissue using a similar approach in the mouse led to an equivalent phenotype. The conditional deletion of the Gαs gene in the ventricle led to comparable effects on contractile function and cardiac histology. We conclude that ric-8b is essential to preserve cardiac contractile function likely through an interaction with the stimulatory G-protein and downstream phosphorylation of myosin light chain 2.

2.
Physiol Genomics ; 56(2): 167-178, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38047311

RESUMEN

Heart failure is a major clinical problem, with treatments involving medication, devices, and emerging neuromodulation therapies such as vagus nerve stimulation (VNS). Considering the ongoing interest in using VNS to treat cardiovascular disease, it is important to understand the genetic and molecular changes developing in the heart in response to this form of autonomic neuromodulation. This experimental animal (rat) study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity using an optogenetic approach. Vagal preganglionic neurons in the dorsal motor nucleus of the vagus nerve were genetically targeted to express light-sensitive chimeric channelrhodopsin variant ChIEF and stimulated using light. RNA sequencing of the left ventricular myocardium identified 294 differentially expressed genes (false discovery rate < 0.05). Qiagen Ingenuity Pathway Analysis (IPA) highlighted 118 canonical pathways that were significantly modulated by vagal activity, of which 14 had a z score of ≥2/≤-2, including EIF-2, IL-2, integrin, and NFAT-regulated cardiac hypertrophy. IPA revealed the effect of efferent vagus stimulation on protein synthesis, autophagy, fibrosis, autonomic signaling, inflammation, and hypertrophy. IPA further predicted that the identified differentially expressed genes were the targets of 50 upstream regulators, including transcription factors (e.g., MYC and NRF1) and microRNAs (e.g., miR-335-3p and miR-338-3p). These data demonstrate that the vagus nerve has a major impact on the myocardial expression of genes involved in the regulation of key biological pathways. The transcriptional response of the ventricular myocardium induced by stimulation of vagal efferents is consistent with the beneficial effect of maintained/increased vagal activity on the heart.NEW & NOTEWORTHY This experimental animal study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity. Vagal stimulation induced significant transcriptional changes in the heart involving the pathways controlling autonomic signaling, inflammation, fibrosis, and hypertrophy. This study provides the first direct evidence that myocardial gene expression is modulated by the activity of the autonomic nervous system.


Asunto(s)
MicroARNs , Estimulación del Nervio Vago , Ratas , Animales , Frecuencia Cardíaca , Corazón , MicroARNs/genética , Hipertrofia , Inflamación , Fibrosis
3.
Circulation ; 148(24): 1932-1944, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37855144

RESUMEN

BACKGROUND: The consequences of exercise-induced premature ventricular contractions (PVCs) in asymptomatic individuals remain unclear. This study aimed to assess the association between PVC burdens during submaximal exercise and major adverse cardiovascular events (MI/HF/LTVA: myocardial infarction [MI], heart failure [HF], and life-threatening ventricular arrhythmia [LTVA]), and all-cause mortality. Additional end points were MI, LTVA, HF, and cardiovascular mortality. METHODS: A neural network was developed to count PVCs from ECGs recorded during exercise (6 minutes) and recovery (1 minute) in 48 315 asymptomatic participants from UK Biobank. Associations were estimated using multivariable Cox proportional hazard models. Explorative studies were conducted in subgroups with cardiovascular magnetic resonance imaging data (n=6290) and NT-proBNP (N-terminal Pro-B-type natriuretic peptide) levels (n=4607) to examine whether PVC burden was associated with subclinical cardiomyopathy. RESULTS: Mean age was 56.8±8.2 years; 51.1% of the participants were female; and median follow-up was 12.6 years. Low PVC counts during exercise and recovery were both associated with MI/HF/LTVA risk, independently of clinical factors: adjusted hazard ratio (HR), 1.2 (1-5 exercise PVCs, P<0.001) and HR, 1.3 (1-5 recovery PVCs, P<0.001). Risks were higher with increasing PVC count: HR, 1.8 (>20 exercise PVCs, P<0.001) and HR, 1.6 (>5 recovery PVCs, P<0.001). A similar trend was observed for all-cause mortality, although associations were only significant for high PVC burdens: HRs, 1.6 (>20 exercise PVCs, P<0.001) and 1.5 (>5 recovery PVCs, P<0.001). Complex PVC rhythms were associated with higher risk compared with PVC count alone. PVCs were also associated with incident HF, LTVA, and cardiovascular mortality, but not MI. In the explorative studies, high PVC burden was associated with larger left ventricular volumes, lower ejection fraction, and higher levels of NT-proBNP compared with participants without PVCs. CONCLUSIONS: In this cohort of middle-aged and older adults, PVC count during submaximal exercise and recovery were both associated with MI/HF/LTVA, all-cause mortality, HF, LTVAs, and cardiovascular mortality, independent of clinical and exercise test factors, indicating an incremental increase in risk as PVC count rises. Complex PVC rhythms were associated with higher risk compared with PVC count alone. Underlying mechanisms may include the presence of subclinical cardiomyopathy.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Infarto del Miocardio , Complejos Prematuros Ventriculares , Persona de Mediana Edad , Humanos , Femenino , Anciano , Masculino , Pronóstico , Complejos Prematuros Ventriculares/complicaciones , Bancos de Muestras Biológicas , Insuficiencia Cardíaca/complicaciones , Cardiomiopatías/complicaciones , Infarto del Miocardio/complicaciones
4.
Hum Mol Genet ; 30(24): 2513-2523, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34274964

RESUMEN

The resting QT interval, an electrocardiographic (ECG) measure of ventricular myocardial repolarization, is a heritable risk marker of cardiovascular mortality, but the mechanisms remain incompletely understood. Previously reported candidate genes have provided insights into the regulatory mechanisms of the QT interval. However, there are still important knowledge gaps. We aimed to gain new insights by (i) providing new candidate genes, (ii) identifying pleiotropic associations with other cardiovascular traits, and (iii) scanning for sexually dimorphic genetic effects. We conducted a genome-wide association analysis for resting QT interval with ~9.8 million variants in 52 107 individuals of European ancestry without known cardiovascular disease from the UK Biobank. We identified 40 loci, 13 of which were novel, including 2 potential sex-specific loci, explaining ~11% of the trait variance. Candidate genes at novel loci were involved in myocardial structure and arrhythmogenic cardiomyopathy. Investigation of pleiotropic effects of QT interval variants using phenome-wide association analyses in 302 000 unrelated individuals from the UK Biobank and pairwise genome-wide comparisons with other ECG and cardiac imaging traits revealed genetic overlap with atrial electrical pathology. These findings provide novel insights into how abnormal myocardial repolarization and increased cardiovascular mortality may be linked.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Electrocardiografía , Femenino , Estudio de Asociación del Genoma Completo/métodos , Genómica , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple/genética
5.
Am J Hum Genet ; 106(6): 764-778, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32386560

RESUMEN

Sudden cardiac death is responsible for half of all deaths from cardiovascular disease. The analysis of the electrophysiological substrate for arrhythmias is crucial for optimal risk stratification. A prolonged T-peak-to-Tend (Tpe) interval on the electrocardiogram is an independent predictor of increased arrhythmic risk, and Tpe changes with heart rate are even stronger predictors. However, our understanding of the electrophysiological mechanisms supporting these risk factors is limited. We conducted genome-wide association studies (GWASs) for resting Tpe and Tpe response to exercise and recovery in ∼30,000 individuals, followed by replication in independent samples (∼42,000 for resting Tpe and ∼22,000 for Tpe response to exercise and recovery), all from UK Biobank. Fifteen and one single-nucleotide variants for resting Tpe and Tpe response to exercise, respectively, were formally replicated. In a full dataset GWAS, 13 further loci for resting Tpe, 1 for Tpe response to exercise and 1 for Tpe response to exercise were genome-wide significant (p ≤ 5 × 10-8). Sex-specific analyses indicated seven additional loci. In total, we identify 32 loci for resting Tpe, 3 for Tpe response to exercise and 3 for Tpe response to recovery modulating ventricular repolarization, as well as cardiac conduction and contraction. Our findings shed light on the genetic basis of resting Tpe and Tpe response to exercise and recovery, unveiling plausible candidate genes and biological mechanisms underlying ventricular excitability.


Asunto(s)
Electrocardiografía , Ejercicio Físico/fisiología , Estudio de Asociación del Genoma Completo , Función Ventricular/genética , Adulto , Anciano , Femenino , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Descanso/fisiología , Caracteres Sexuales , Reino Unido , Función Ventricular/fisiología
6.
Hum Mol Genet ; 29(11): 1797-1807, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-31423533

RESUMEN

Stillbirth is the loss of a fetus after 22 weeks of gestation, of which almost half go completely unexplained despite post-mortem. We recently sequenced 35 arrhythmia-associated genes from 70 unexplained stillbirth cases. Our hypothesis was that deleterious mutations in channelopathy genes may have a functional effect in utero that may be pro-arrhythmic in the developing fetus. We observed four heterozygous, nonsynonymous variants in transient receptor potential melastatin 7 (TRPM7), a ubiquitously expressed ion channel known to regulate cardiac development and repolarization in mice. We used site-directed mutagenesis and single-cell patch-clamp to analyze the functional effect of the four stillbirth mutants on TRPM7 ion channel function in heterologous cells. We also used cardiomyocytes derived from human pluripotent stem cells to model the contribution of TRPM7 to action potential morphology. Our results show that two TRPM7 variants, p.G179V and p.T860M, lead to a marked reduction in ion channel conductance. This observation was underpinned by a lack of measurable TRPM7 protein expression, which in the case of p.T860M was due to rapid proteasomal degradation. We also report that human hiPSC-derived cardiomyocytes possess measurable TRPM7 currents; however, siRNA knockdown did not directly affect action potential morphology. TRPM7 variants found in the unexplained stillbirth population adversely affect ion channel function and this may precipitate fatal arrhythmia in utero.


Asunto(s)
Arritmias Cardíacas/genética , Predisposición Genética a la Enfermedad , Proteínas Serina-Treonina Quinasas/genética , Mortinato/genética , Canales Catiónicos TRPM/genética , Feto Abortado/fisiopatología , Animales , Arritmias Cardíacas/patología , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Corazón/crecimiento & desarrollo , Corazón/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Canales Iónicos/genética , Ratones , Mutación/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología
7.
Cephalalgia ; 42(2): 93-107, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34816764

RESUMEN

BACKGROUND: Opening of KATP channels by systemic levcromakalim treatment triggers attacks in migraine patients and hypersensitivity to von Frey stimulation in a mouse model. Blocking of these channels is effective in several preclinical migraine models. It is unknown in what tissue and cell type KATP-induced migraine attacks are initiated and which KATP channel subtype is targeted. METHODS: In mouse models, we administered levcromakalim intracerebroventricularly, intraperitoneally and intraplantarily and compared the nociceptive responses by von Frey and hotplate tests. Mice with a conditional loss-of-function mutation in the smooth muscle KATP channel subunit Kir6.1 were given levcromakalim and GTN and examined with von Frey filaments. Arteries were tested for their ability to dilate ex vivo. mRNA expression, western blotting and immunohistochemical stainings were made to identify relevant target tissue for migraine induced by KATP channel opening. RESULTS: Systemic administration of levcromakalim induced hypersensitivity but central and local administration provided antinociception respectively no effect. The Kir6.1 smooth muscle knockout mouse was protected from both GTN and levcromakalim induced hypersensitivity, and their arteries had impaired dilatory response to the latter. mRNA and protein expression studies showed that trigeminal ganglia did not have significant KATP channel expression of any subtype, whereas brain arteries and dura mater primarily expressed the Kir6.1 + SUR2B subtype. CONCLUSION: Hypersensitivity provoked by GTN and levcromakalim in mice is dependent on functional smooth muscle KATP channels of extracerebral origin. These results suggest a vascular contribution to hypersensitivity induced by migraine triggers.


Asunto(s)
Canales KATP , Trastornos Migrañosos , Adenosina Trifosfato , Animales , Cromakalim/efectos adversos , Modelos Animales de Enfermedad , Humanos , Canales KATP/genética , Canales KATP/metabolismo , Ratones , Ratones Noqueados , Músculo Liso/metabolismo , ARN Mensajero
8.
Physiol Genomics ; 53(4): 150-159, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33719582

RESUMEN

We have assessed the role of ric-b8 in the control of heart rate after the gene was implicated in a recent genome-wide association study of resting heart rate. We developed a novel murine model in which it was possible to conditionally delete ric-8b in the sinoatrial (SA) node after the addition of tamoxifen. Despite this, we were unable to obtain homozygotes and thus studied heterozygotes. Haploinsufficiency of ric-8b in the sinoatrial node induced by the addition of tamoxifen in adult animals leads to mice with a reduced heart rate. However, other electrocardiographic intervals (e.g., PR and QRS) were normal, and there was no apparent arrhythmia such as heart block. The positive chronotropic response to isoprenaline was abrogated, whereas the response to carbachol was unchanged. The pacemaker current If (funny current) has an important role in regulating heart rate, and its function is modulated by both isoprenaline and carbachol. Using a heterologous system expressing HCN4, we show that ric-8b can modulate the HCN4 current. Overexpression of ric-8b led to larger HCN4 currents, whereas silencing ric-8b led to smaller currents. Ric-8b modulates heart rate responses in vivo likely via its actions on the stimulatory G-protein.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Frecuencia Cardíaca , Animales , Estudio de Asociación del Genoma Completo , Factores de Intercambio de Guanina Nucleótido/genética , Ratones
9.
Handb Exp Pharmacol ; 267: 357-378, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34247283

RESUMEN

ATP-sensitive K+ channels (KATP) are inwardly-rectifying potassium channels, broadly expressed throughout the body. KATP is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels thus playing an important physiological role by coupling cellular metabolism with membrane excitability. The hetero-octameric channel complex is formed of 4 pore-forming inward rectifier Kir6.x subunits (Kir6.1 or Kir6.2) and 4 regulatory sulfonylurea receptor subunits (SUR1, SUR2A, or SUR2B). These subunits can associate in various tissue-specific combinations to form functional KATP channels with distinct electrophysiological and pharmacological properties. KATP channels play many important physiological roles and mutations in channel subunits can result in diseases such as disorders of insulin handling, cardiac arrhythmia, cardiomyopathy, and neurological abnormalities. The tissue-specific expression of KATP channel subunits coupled with their rich and diverse pharmacology makes KATP channels attractive therapeutic targets in the treatment of endocrine and cardiovascular diseases.


Asunto(s)
Adenosina Trifosfato , Humanos , Mutación , Receptores de Sulfonilureas/genética
10.
Am J Physiol Cell Physiol ; 317(3): C576-C583, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31291141

RESUMEN

A murine line haploinsufficient in the cardiac sodium channel has been used to model human Brugada syndrome: a disease causing sudden cardiac death due to lethal ventricular arrhythmias. We explored the effects of cholinergic tone on electrophysiological parameters in wild-type and genetically modified, heterozygous, Scn5a+/- knockout mice. Scn5a+/- ventricular slices showed longer refractory periods than wild-type both at baseline and during isoprenaline challenge. Scn5a+/- hearts also showed lower conduction velocities and increased mean increase in delay than did littermate controls at baseline and blunted responses to isoprenaline challenge. Carbachol exerted limited effects but reversed the effects of isoprenaline with coapplication. Scn5a+/- mice showed a reduction in conduction reserve in that isoprenaline no longer increased conduction velocity, and this was not antagonized by muscarinic agonists.


Asunto(s)
Síndrome de Brugada/metabolismo , Haploinsuficiencia/fisiología , Preparación de Corazón Aislado , Contracción Miocárdica/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/deficiencia , Animales , Síndrome de Brugada/genética , Síndrome de Brugada/fisiopatología , Femenino , Preparación de Corazón Aislado/métodos , Masculino , Ratones , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canales de Sodio/deficiencia , Canales de Sodio/genética
11.
Physiol Genomics ; 51(8): 323-332, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31172864

RESUMEN

Atrial fibrillation is a significant worldwide contributor to cardiovascular morbidity and mortality. Few studies have investigated the differences in gene expression between the left and right atrial appendages, leaving their characterization largely unexplored. In this study, differential gene expression was investigated in atrial fibrillation and sinus rhythm using left and right atrial appendages from the same patients. RNA sequencing was performed on the left and right atrial appendages from five sinus rhythm (SR) control patients and five permanent AF case patients. Differential gene expression in both the left and right atrial appendages was analyzed using the Bioconductor package edgeR. A selection of differentially expressed genes, with relevance to atrial fibrillation, were further validated using quantitative RT-PCR. The distribution of the samples assessed through principal component analysis showed distinct grouping between left and right atrial appendages and between SR controls and AF cases. Overall 157 differentially expressed genes were identified to be downregulated and 90 genes upregulated in AF. Pathway enrichment analysis indicated a greater involvement of left atrial genes in the Wnt signaling pathway whereas right atrial genes were involved in clathrin-coated vesicle and collagen formation. The differing expression of genes in both left and right atrial appendages indicate that there are different mechanisms for development, support and remodeling of AF within the left and right atria.


Asunto(s)
Apéndice Atrial/fisiopatología , Fibrilación Atrial/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Anciano , Anciano de 80 o más Años , Fibrilación Atrial/patología , Vesículas Cubiertas por Clatrina/metabolismo , Estudios de Cohortes , Colágeno/metabolismo , Puente de Arteria Coronaria , Regulación hacia Abajo/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Regulación hacia Arriba/genética , Vía de Señalización Wnt/genética
12.
J Biol Chem ; 293(23): 8912-8921, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29666184

RESUMEN

ATP-sensitive potassium channels (KATP) contribute to membrane currents in many tissues, are responsive to intracellular metabolism, and open as ATP falls and ADP rises. KATP channels are widely distributed in tissues and are prominently expressed in the heart. They have generally been observed in ventricular tissue, but they are also expressed in the atria and conduction tissues. In this study, we focused on the contribution and role of the inwardly rectifying KATP channel subunit, Kir6.1, in the sinoatrial node (SAN). To develop a murine, conduction-specific Kir6.1 KO model, we selectively deleted Kir6.1 in the conduction system in adult mice (cKO). Electrophysiological data in single SAN cells indicated that Kir6.1 underlies a KATP current in a significant proportion of cells and influences early repolarization during pacemaking, resulting in prolonged cycle length. Implanted telemetry probes to measure heart rate and electrocardiographic characteristics revealed that the cKO mice have a slow heart rate, with episodes of sinus arrest in some mice. The PR interval (time between the onset of the P wave to the beginning of QRS complex) was increased, suggesting effects on the atrioventricular node. Ex vivo studies of whole heart or dissected heart regions disclosed impaired adaptive responses of the SAN to hypoxia, and this may have had long-term pathological consequences in the cKO mice. In conclusion, Kir6.1-containing KATP channels in the SAN have a role in excitability, heart rate control, and the electrophysiological adaptation of the SAN to hypoxia.


Asunto(s)
Frecuencia Cardíaca , Canales KATP/metabolismo , Potasio/metabolismo , Nodo Sinoatrial/metabolismo , Aclimatación , Potenciales de Acción , Animales , Células Cultivadas , Eliminación de Gen , Hipoxia/metabolismo , Canales KATP/genética , Ratones , Ratones Noqueados
13.
J Cardiovasc Electrophysiol ; 30(5): 691-701, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30801836

RESUMEN

INTRODUCTION: Stochastic trajectory analysis of ranked signals (STAR) is a novel method for mapping arrhythmia. The aim was to describe its development and validation as a mapping tool. METHODS AND RESULTS: The method ranks electrodes in terms of the proportion of the time they lead relative to neighboring electrodes and ascribes a predominant direction of activation between electrodes. This was conceived with the aim of mapping atrial fibrillation (AF) drivers. Validation of this approach was performed in stages. First, in vitro simultaneous multi-electrode array and optical mapping were performed on spontaneously fibrillating HL1 cell cultures, to determine if such a method would be able to determine early sites of activation (ESA). A clinical study acquiring unipolar electrograms using a 64-pole basket for the purposes of STAR mapping in patients undergoing atrial tachycardia (AT) ablation. STAR maps were analyzed by physicians to see if arrhythmia mechanisms could be correctly determined. Mapping was then repeated during atrial pacing. STAR mapping of in vitro activation sequences accurately correlated to the optical maps of planar and rotational activation. Thirty-two ATs were mapped in 25 patients. The ESA accurately identified focal/micro-reentrant ATs and the mechanism of macro-reentrant ATs was effectively demonstrated. STAR method accurately identified four pacing sites in all patients. CONCLUSIONS: This novel STAR method correlated well with the gold standard of optical mapping in vitro and was able to accurately identify AT mechanisms. Further analysis is needed to determine whether the method might be of use mapping AF.


Asunto(s)
Potenciales de Acción , Fibrilación Atrial/diagnóstico , Diagnóstico por Computador , Técnicas Electrofisiológicas Cardíacas , Frecuencia Cardíaca , Procesamiento de Señales Asistido por Computador , Taquicardia Supraventricular/diagnóstico , Imagen de Colorante Sensible al Voltaje , Animales , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/cirugía , Ablación por Catéter , Línea Celular , Humanos , Ratones , Miocitos Cardíacos/fisiología , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Procesos Estocásticos , Taquicardia Supraventricular/fisiopatología , Taquicardia Supraventricular/cirugía , Factores de Tiempo , Resultado del Tratamiento
14.
Eur Heart J ; 39(43): 3879-3892, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29741611

RESUMEN

Aims: Sarcomeric gene mutations frequently underlie hypertrophic cardiomyopathy (HCM), a prevalent and complex condition leading to left ventricle thickening and heart dysfunction. We evaluated isogenic genome-edited human pluripotent stem cell-cardiomyocytes (hPSC-CM) for their validity to model, and add clarity to, HCM. Methods and results: CRISPR/Cas9 editing produced 11 variants of the HCM-causing mutation c.C9123T-MYH7 [(p.R453C-ß-myosin heavy chain (MHC)] in 3 independent hPSC lines. Isogenic sets were differentiated to hPSC-CMs for high-throughput, non-subjective molecular and functional assessment using 12 approaches in 2D monolayers and/or 3D engineered heart tissues. Although immature, edited hPSC-CMs exhibited the main hallmarks of HCM (hypertrophy, multi-nucleation, hypertrophic marker expression, sarcomeric disarray). Functional evaluation supported the energy depletion model due to higher metabolic respiration activity, accompanied by abnormalities in calcium handling, arrhythmias, and contraction force. Partial phenotypic rescue was achieved with ranolazine but not omecamtiv mecarbil, while RNAseq highlighted potentially novel molecular targets. Conclusion: Our holistic and comprehensive approach showed that energy depletion affected core cardiomyocyte functionality. The engineered R453C-ßMHC-mutation triggered compensatory responses in hPSC-CMs, causing increased ATP production and αMHC to energy-efficient ßMHC switching. We showed that pharmacological rescue of arrhythmias was possible, while MHY7: MYH6 and mutant: wild-type MYH7 ratios may be diagnostic, and previously undescribed lncRNAs and gene modifiers are suggestive of new mechanisms.


Asunto(s)
Arritmias Cardíacas/genética , Cardiomiopatía Hipertrófica/genética , Contracción Miocárdica/genética , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes/fisiología , Sistemas CRISPR-Cas/genética , Células Cultivadas , Edición Génica , Humanos , Modelos Cardiovasculares
15.
Am J Physiol Cell Physiol ; 314(5): C616-C626, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29342363

RESUMEN

G protein-gated inwardly rectifying K+ (GIRK) channels are the major inwardly rectifying K+ currents in cardiac atrial myocytes and an important determinant of atrial electrophysiology. Inhibitory G protein α-subunits can both mediate activation via acetylcholine but can also suppress basal currents in the absence of agonist. We studied this phenomenon using whole cell patch clamping in murine atria from mice with global genetic deletion of Gαi2, combined deletion of Gαi1/Gαi3, and littermate controls. We found that mice with deletion of Gαi2 had increased basal and agonist-activated currents, particularly in the right atria while in contrast those with Gαi1/Gαi3 deletion had reduced currents. Mice with global genetic deletion of Gαi2 had decreased action potential duration. Tissue preparations of the left atria studied with a multielectrode array from Gαi2 knockout mice showed a shorter effective refractory period, with no change in conduction velocity, than littermate controls. Transcriptional studies revealed increased expression of GIRK channel subunit genes in Gαi2 knockout mice. Thus different G protein isoforms have differential effects on GIRK channel behavior and paradoxically Gαi2 act to increase basal and agonist-activated GIRK currents. Deletion of Gαi2 is potentially proarrhythmic in the atria.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Atrios Cardíacos/metabolismo , Activación del Canal Iónico , Potasio/metabolismo , Potenciales de Acción , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Función del Atrio Izquierdo , Función del Atrio Derecho , Femenino , Subunidad alfa de la Proteína de Unión al GTP Gi2/deficiencia , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/deficiencia , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Frecuencia Cardíaca , Cinética , Masculino , Ratones de la Cepa 129 , Ratones Noqueados , Periodo Refractario Electrofisiológico
16.
J Biol Chem ; 292(43): 17587-17597, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-28893911

RESUMEN

ATP-sensitive potassium (KATP) channels are widely expressed in the cardiovascular system, where they regulate a range of biological activities by linking cellular metabolism with membrane excitability. KATP channels in vascular smooth muscle have a well-defined role in regulating vascular tone. KATP channels are also thought to be expressed in vascular endothelial cells, but their presence and function in this context are less clear. As a result, we aimed to investigate the molecular composition and physiological role of endothelial KATP channels. We first generated mice with an endothelial specific deletion of the channel subunit Kir6.1 (eKO) using cre-loxP technology. Data from qRT-PCR, patch clamp, ex vivo coronary perfusion Langendorff heart experiments, and endothelial cell Ca2+ imaging comparing eKO and wild-type mice show that Kir6.1-containing KATP channels are indeed present in vascular endothelium. An increase in intracellular [Ca2+], which is central to changes in endothelial function such as mediator release, at least partly contributes to the endothelium-dependent vasorelaxation induced by the KATP channel opener pinacidil. The absence of Kir6.1 did not elevate basal coronary perfusion pressure in eKO mice. However, vasorelaxation was impaired during hypoxia in the coronary circulation, and this resulted in greater cardiac injury during ischemia-reperfusion. The response to adenosine receptor stimulation was impaired in eKO mice in single cells in patch clamp recordings and in the intact coronary circulation. Our data support the existence of an endothelial KATP channel that contains Kir6.1, is involved in vascular reactivity in the coronary circulation, and has a protective role in ischemia reperfusion.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Circulación Coronaria , Endotelio Vascular/metabolismo , Canales KATP/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Vasodilatación , Animales , Endotelio Vascular/fisiopatología , Canales KATP/genética , Ratones , Ratones Noqueados , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/fisiopatología
17.
Proc Natl Acad Sci U S A ; 112(9): E973-81, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25691752

RESUMEN

Desmosomes are anchoring junctions that exist in cells that endure physical stress such as cardiac myocytes. The importance of desmosomes in maintaining the homeostasis of the myocardium is underscored by frequent mutations of desmosome components found in human patients and animal models. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a phenotype caused by mutations in desmosomal components in ∼ 50% of patients, however, the causes in the remaining 50% of patients still remain unknown. A deficiency of inhibitor of apoptosis-stimulating protein of p53 (iASPP), an evolutionarily conserved inhibitor of p53, caused by spontaneous mutation recently has been associated with a lethal autosomal recessive cardiomyopathy in Poll Hereford calves and Wa3 mice. However, the molecular mechanisms that mediate this putative function of iASPP are completely unknown. Here, we show that iASPP is expressed at intercalated discs in human and mouse postmitotic cardiomyocytes. iASPP interacts with desmoplakin and desmin in cardiomyocytes to maintain the integrity of desmosomes and intermediate filament networks in vitro and in vivo. iASPP deficiency specifically induces right ventricular dilatation in mouse embryos at embryonic day 16.5. iASPP-deficient mice with exon 8 deletion (Ppp1r13l(Δ8/Δ8)) die of sudden cardiac death, displaying features of ARVC. Intercalated discs in cardiomyocytes from four of six human ARVC cases show reduced or loss of iASPP. ARVC-derived desmoplakin mutants DSP-1-V30M and DSP-1-S299R exhibit weaker binding to iASPP. These data demonstrate that by interacting with desmoplakin and desmin, iASPP is an important regulator of desmosomal function both in vitro and in vivo. This newly identified property of iASPP may provide new molecular insight into the pathogenesis of ARVC.


Asunto(s)
Arritmias Cardíacas , Cardiomiopatía Hipertrófica Familiar , Muerte Súbita , Desmosomas , Péptidos y Proteínas de Señalización Intracelular , Proteínas Represoras , Sustitución de Aminoácidos , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Secuencia de Bases , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Bovinos , Línea Celular Transformada , Desmina/genética , Desmina/metabolismo , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Desmosomas/genética , Desmosomas/metabolismo , Desmosomas/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Filamentos Intermedios , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Mutación Missense , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Eliminación de Secuencia
18.
Hum Mol Genet ; 24(18): 5142-53, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26092864

RESUMEN

Congenital Hyperinsulinism (CHI) is a rare heterogeneous disease characterized by unregulated insulin secretion. Dominant mutations in ABCC8 causing medically unresponsive CHI have been reported; however, the molecular mechanisms are not clear. The molecular basis of medically unresponsive CHI due to dominant ABCC8 mutations has been studied in 10 patients, who were medically unresponsive to diazoxide (DZX), and nine of whom required a near-total pancreatectomy, and one partial pancreatectomy. DNA sequencing revealed seven dominant inactivating heterozygous missense mutations in ABCC8, including one novel and six previously reported but uncharacterized mutations. Two groups of mutations with different cellular mechanisms were characterized. Mutations in the transmembrane domain (TMD) were more responsive to channel activators such as DZX, MgADP and metabolic inhibition. The trafficking analysis has shown that nucleotide-binding domain two (NBD2) mutations are not retained in the endoplasmic reticulum (ER) and are present on the membrane. However, the TMD mutations were retained in the ER. D1506E was the most severe SUR1-NBD2 mutation. Homologous expression of D1506E revealed a near absence of KATP currents in the presence of DZX and intracellular MgADP. Heterozygous expression of D1506E showed a strong dominant-negative effect on SUR1\Kir6.2 currents. Overall, we define two groups of mutation with different cellular mechanisms. In the first group, channel complexes with mutations in NBD2 of SUR1 traffic normally but are unable to be activated by MgADP. In the second group, channels mutations in the TMD of SUR1 are retained in the ER and have variable functional impairment.


Asunto(s)
Hiperinsulinismo Congénito/genética , Genes Dominantes , Mutación , Receptores de Sulfonilureas/genética , Línea Celular , Hiperinsulinismo Congénito/diagnóstico , Hiperinsulinismo Congénito/cirugía , Femenino , Expresión Génica , Estudios de Asociación Genética , Homocigoto , Humanos , Recién Nacido , Espacio Intracelular/metabolismo , Masculino , Nucleótidos/metabolismo , Técnicas de Placa-Clamp , Linaje , Canales de Potasio/genética , Canales de Potasio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Transporte de Proteínas , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/metabolismo
19.
J Membr Biol ; 250(5): 471-481, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28766006

RESUMEN

Cardiac electrophysiology is regulated by the autonomic nervous system, and this has both pathophysiological, and possibly therapeutic importance. Furthermore, chamber differences in electrophysiology exist between atria and ventricles, yet there have been few direct comparisons. There is substantial literature on ion channel modulation at the single-cell level but less work on how this affects tissue-level parameters. We used a microelectrode array system to explore these issues using murine atrial and ventricular tissue slices. Activation time, conduction velocity and repolarisation were measured, and their modulation by temperature and pharmacological autonomic agonists were assessed. The system recorded reliable measurements under control conditions in the absence of drug/thermal challenge, and significant baseline differences were found in chamber electrophysiology. The sodium channel blocker mexiletine, produced large magnitude changes in all three measured parameters. Carbachol and isoprenaline induced differing effects in atria and ventricles, whereas temperature produced similar effects on activation and repolarisation.


Asunto(s)
Función Atrial/fisiología , Técnicas Electrofisiológicas Cardíacas , Fenómenos Electrofisiológicos , Miocardio , Función Ventricular/fisiología , Animales , Función Atrial/efectos de los fármacos , Carbacol/farmacología , Femenino , Atrios Cardíacos , Ventrículos Cardíacos , Isoproterenol/farmacología , Masculino , Mexiletine/farmacología , Ratones , Microelectrodos , Función Ventricular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA