Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 95(3): 809-52, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26109340

RESUMEN

The neuromuscular junction is the chemical synapse between motor neurons and skeletal muscle fibers. It is designed to reliably convert the action potential from the presynaptic motor neuron into the contraction of the postsynaptic muscle fiber. Diseases that affect the neuromuscular junction may cause failure of this conversion and result in loss of ambulation and respiration. The loss of motor input also causes muscle wasting as muscle mass is constantly adapted to contractile needs by the balancing of protein synthesis and protein degradation. Finally, neuromuscular activity and muscle mass have a major impact on metabolic properties of the organisms. This review discusses the mechanisms involved in the development and maintenance of the neuromuscular junction, the consequences of and the mechanisms involved in its dysfunction, and its role in maintaining muscle mass during aging. As life expectancy is increasing, loss of muscle mass during aging, called sarcopenia, has emerged as a field of high medical need. Interestingly, aging is also accompanied by structural changes at the neuromuscular junction, suggesting that the mechanisms involved in neuromuscular junction maintenance might be disturbed during aging. In addition, there is now evidence that behavioral paradigms and signaling pathways that are involved in longevity also affect neuromuscular junction stability and sarcopenia.


Asunto(s)
Músculo Esquelético/inervación , Unión Neuromuscular/crecimiento & desarrollo , Sarcopenia/fisiopatología , Transmisión Sináptica , Acetilcolina/metabolismo , Factores de Edad , Animales , Humanos , Modelos Animales , Contracción Muscular , Fuerza Muscular , Músculo Esquelético/patología , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patología
2.
BMC Biol ; 18(1): 81, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620110

RESUMEN

BACKGROUND: mTOR signaling is an essential nutrient and energetic sensing pathway. Here we describe AIMTOR, a sensitive genetically encoded BRET (Bioluminescent Resonance Energy Transfer) biosensor to study mTOR activity in living cells. RESULTS: As a proof of principle, we show in both cell lines and primary cell cultures that AIMTOR BRET intensities are modified by mTOR activity changes induced by specific inhibitors and activators of mTORC1 including amino acids and insulin. We further engineered several versions of AIMTOR enabling subcellular-specific assessment of mTOR activities. We then used AIMTOR to decipher mTOR signaling in physio-pathological conditions. First, we show that mTORC1 activity increases during muscle cell differentiation and in response to leucine stimulation in different subcellular compartments such as the cytosol and at the surface of the lysosome, the nucleus, and near the mitochondria. Second, in hippocampal neurons, we found that the enhancement of neuronal activity increases mTOR signaling. AIMTOR further reveals mTOR-signaling dysfunctions in neurons from mouse models of autism spectrum disorder. CONCLUSIONS: Altogether, our results demonstrate that AIMTOR is a sensitive and specific tool to investigate mTOR-signaling dynamics in living cells and phenotype mTORopathies.


Asunto(s)
Técnicas Biosensibles/métodos , Transducción de Señal , Serina-Treonina Quinasas TOR/fisiología , Animales , Diagnóstico por Imagen/métodos , Células HEK293 , Humanos , Ratones , Músculo Cuádriceps/fisiología
3.
J Mol Cell Cardiol ; 97: 213-25, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27133769

RESUMEN

Mechanistic target of rapamycin (mTOR) is a central regulator of cell growth, proliferation, survival and metabolism, as part of mTOR complex 1 (mTORC1) and mTORC2. While partial inhibition of mTORC1 using rapamycin was shown to be cardioprotective, genetic studies in mouse models revealed that mTOR is essential for embryonic heart development and cardiac function in adults. However, the physiological role of mTOR during postnatal cardiac maturation is not fully elucidated. We have therefore generated a mouse model in which cardiac mTOR was inactivated at an early postnatal stage. Mutant mTORcmKO mice rapidly developed a dilated cardiomyopathy associated with cardiomyocyte growth defects, apoptosis and fibrosis, and died during their third week. Here, we show that reduced cardiomyocyte growth results from impaired protein translation efficiency through both 4E-BP1-dependent and -independent mechanisms. In addition, infant mTORcmKO hearts displayed markedly increased apoptosis linked to stretch-induced ANKRD1 (Ankyrin repeat-domain containing protein 1) up-regulation, JNK kinase activation and p53 accumulation. Pharmacological inhibition of p53 with pifithrin-α attenuated caspase-3 activation. Cardiomyocyte death did not result from activation of the MST1/Hippo pro-apoptotic pathway as reported in adult rictor/mTORC2 KO hearts. As well, mTORcmKO hearts showed a strong downregulation of myoglobin content, thereby leading to a hypoxic environment. Nevertheless, they lacked a HIF1α-mediated adaptive response, as mTOR is required for hypoxia-induced HIF-1α activation. Altogether, our results demonstrate that mTOR is critically required for cardiomyocyte growth, viability and oxygen supply in early postnatal myocardium and provide insight into the molecular mechanisms involved in apoptosis of mTOR-depleted cardiomyocytes.


Asunto(s)
Apoptosis/genética , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Biosíntesis de Proteínas , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Biomarcadores , Biopsia , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Puente Cardiopulmonar , Modelos Animales de Enfermedad , Ecocardiografía , Metabolismo Energético/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Pruebas de Función Cardíaca , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Ratones Noqueados , Proteínas Musculares/metabolismo , Mioglobina/metabolismo , Proteínas Nucleares/metabolismo , Proteolisis , Proteínas Represoras/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
Commun Biol ; 7(1): 974, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127848

RESUMEN

Calorie restriction (CR) and treatment with rapamycin (RM), an inhibitor of the mTORC1 growth-promoting signaling pathway, are known to slow aging and promote health from worms to humans. At the transcriptome and proteome levels, long-term CR and RM treatments have partially overlapping effects, while their impact on protein phosphorylation within cellular signaling pathways have not been compared. Here we measured the phosphoproteomes of soleus, tibialis anterior, triceps brachii and gastrocnemius muscles from adult (10 months) and 30-month-old (aged) mice receiving either a control, a calorie restricted or an RM containing diet from 15 months of age. We reproducibly detected and extensively analyzed a total of 6960 phosphosites, 1415 of which are not represented in standard repositories. We reveal the effect of these interventions on known mTORC1 pathway substrates, with CR displaying greater between-muscle variation than RM. Overall, CR and RM have largely consistent, but quantitatively distinct long-term effects on the phosphoproteome, mitigating age-related changes to different degrees. Our data expands the catalog of protein phosphorylation sites in the mouse, providing important information regarding their tissue-specificity, and revealing the impact of long-term nutrient-sensing pathway inhibition on mouse skeletal muscle.


Asunto(s)
Envejecimiento , Restricción Calórica , Músculo Esquelético , Sirolimus , Animales , Fosforilación , Envejecimiento/metabolismo , Sirolimus/farmacología , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal/efectos de los fármacos , Proteoma/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas Musculares/metabolismo
5.
Skelet Muscle ; 14(1): 11, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769542

RESUMEN

BACKGROUND: Myotonic Dystrophy type I (DM1) is the most common muscular dystrophy in adults. Previous reports have highlighted that neuromuscular junctions (NMJs) deteriorate in skeletal muscle from DM1 patients and mouse models thereof. However, the underlying pathomechanisms and their contribution to muscle dysfunction remain unknown. METHODS: We compared changes in NMJs and activity-dependent signalling pathways in HSALR and Mbnl1ΔE3/ΔE3 mice, two established mouse models of DM1. RESULTS: Muscle from DM1 mouse models showed major deregulation of calcium/calmodulin-dependent protein kinases II (CaMKIIs), which are key activity sensors regulating synaptic gene expression and acetylcholine receptor (AChR) recycling at the NMJ. Both mouse models exhibited increased fragmentation of the endplate, which preceded muscle degeneration. Endplate fragmentation was not accompanied by changes in AChR turnover at the NMJ. However, the expression of synaptic genes was up-regulated in mutant innervated muscle, together with an abnormal accumulation of histone deacetylase 4 (HDAC4), a known target of CaMKII. Interestingly, denervation-induced increase in synaptic gene expression and AChR turnover was hampered in DM1 muscle. Importantly, CaMKIIß/ßM overexpression normalized endplate fragmentation and synaptic gene expression in innervated Mbnl1ΔE3/ΔE3 muscle, but it did not restore denervation-induced synaptic gene up-regulation. CONCLUSIONS: Our results indicate that CaMKIIß-dependent and -independent mechanisms perturb synaptic gene regulation and muscle response to denervation in DM1 mouse models. Changes in these signalling pathways may contribute to NMJ destabilization and muscle dysfunction in DM1 patients.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Modelos Animales de Enfermedad , Músculo Esquelético , Distrofia Miotónica , Unión Neuromuscular , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Distrofia Miotónica/fisiopatología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Unión Neuromuscular/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/inervación , Músculo Esquelético/patología , Ratones , Humanos , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/genética , Masculino , Ratones Endogámicos C57BL
6.
EMBO J ; 27(8): 1266-76, 2008 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-18354498

RESUMEN

In response to cancer, AIDS, sepsis and other systemic diseases inducing muscle atrophy, the E3 ubiquitin ligase Atrogin1/MAFbx (MAFbx) is dramatically upregulated and this response is necessary for rapid atrophy. However, the precise function of MAFbx in muscle wasting has been questioned. Here, we present evidence that during muscle atrophy MAFbx targets the eukaryotic initiation factor 3 subunit 5 (eIF3-f) for ubiquitination and degradation by the proteasome. Ectopic expression of MAFbx in myotubes induces atrophy and degradation of eIF3-f. Conversely, blockade of MAFbx expression by small hairpin RNA interference prevents eIF3-f degradation in myotubes undergoing atrophy. Furthermore, genetic activation of eIF3-f is sufficient to cause hypertrophy and to block atrophy in myotubes, whereas genetic blockade of eIF3-f expression induces atrophy in myotubes. Finally, eIF3-f induces increasing expression of muscle structural proteins and hypertrophy in both myotubes and mouse skeletal muscle. We conclude that eIF3-f is a key target that accounts for MAFbx function during muscle atrophy and has a major role in skeletal muscle hypertrophy. Thus, eIF3-f seems to be an attractive therapeutic target.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas Musculares/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Proteínas Ligasas SKP Cullina F-box/fisiología , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Hipertrofia/enzimología , Hipertrofia/metabolismo , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/enzimología , Atrofia Muscular/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Mapeo de Interacción de Proteínas , Ubiquitinación
7.
Commun Biol ; 5(1): 1141, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302954

RESUMEN

Muscle size is controlled by the PI3K-PKB/Akt-mTORC1-FoxO pathway, which integrates signals from growth factors, energy and amino acids to activate protein synthesis and inhibit protein breakdown. While mTORC1 activity is necessary for PKB/Akt-induced muscle hypertrophy, its constant activation alone induces muscle atrophy. Here we show that this paradox is based on mTORC1 activity promoting protein breakdown through the ubiquitin-proteasome system (UPS) by simultaneously inducing ubiquitin E3 ligase expression via feedback inhibition of PKB/Akt and proteasome biogenesis via Nuclear Factor Erythroid 2-Like 1 (Nrf1). Muscle growth was restored by reactivation of PKB/Akt, but not by Nrf1 knockdown, implicating ubiquitination as the limiting step. However, both PKB/Akt activation and proteasome depletion by Nrf1 knockdown led to an immediate disruption of proteome integrity with rapid accumulation of damaged material. These data highlight the physiological importance of mTORC1-mediated PKB/Akt inhibition and point to juxtaposed roles of the UPS in atrophy and proteome integrity.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteostasis , Proteoma/metabolismo , Músculo Esquelético/metabolismo
8.
Meat Sci ; 185: 108726, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34973590

RESUMEN

Myostatin deficiency leads to extensive skeletal muscle hypertrophy, but its consequence on post-mortem muscle proteolysis is unknown. Here, we compared muscle myofibrillar protein degradation, and autophagy, ubiquitin-proteasome and Ca2+-dependent proteolysis relative to the energetic and redox status in wild-type (WT) and myostatin knock-out mice (KO) during early post-mortem storage. KO muscles showed higher degradation of myofibrillar proteins in the first 24 h after death, associated with preserved antioxidant status, compared with WT muscles. Analysis of key autophagy and ubiquitin-proteasome system markers indicated that these two pathways were not upregulated in post-mortem muscle (both genotypes), but basal autophagic flux and ATP content were lower in KO muscles. Proteasome and caspase activities were not different between WT and KO mice. Conversely, calpain activity was higher in KO muscles, concomitantly with higher troponin T and desmin degradation. Altogether, these results suggest that calpains but not the autophagy, proteasome and caspase systems, explain the difference in post-mortem muscle protein proteolysis between both genotypes.


Asunto(s)
Calpaína , Miostatina , Animales , Calpaína/genética , Calpaína/metabolismo , Silenciador del Gen , Ratones , Músculo Esquelético/metabolismo , Miostatina/genética , Proteolisis
9.
Nat Commun ; 13(1): 2025, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440545

RESUMEN

Preserving skeletal muscle function is essential to maintain life quality at high age. Calorie restriction (CR) potently extends health and lifespan, but is largely unachievable in humans, making "CR mimetics" of great interest. CR targets nutrient-sensing pathways centering on mTORC1. The mTORC1 inhibitor, rapamycin, is considered a potential CR mimetic and is proven to counteract age-related muscle loss. Therefore, we tested whether rapamycin acts via similar mechanisms as CR to slow muscle aging. Here we show that long-term CR and rapamycin unexpectedly display distinct gene expression profiles in geriatric mouse skeletal muscle, despite both benefiting aging muscles. Furthermore, CR improves muscle integrity in mice with nutrient-insensitive, sustained muscle mTORC1 activity and rapamycin provides additive benefits to CR in naturally aging mouse muscles. We conclude that rapamycin and CR exert distinct, compounding effects in aging skeletal muscle, thus opening the possibility of parallel interventions to counteract muscle aging.


Asunto(s)
Restricción Calórica , Sirolimus , Envejecimiento/fisiología , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Músculo Esquelético , Sirolimus/farmacología
10.
J Cell Biochem ; 112(12): 3531-42, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21769921

RESUMEN

Myostatin deficiency leads in skeletal muscle overgrowth but the precise molecular mechanisms underlying this hypertrophy are not well understood. In this study, to gain insight into the role of endogenous myostatin in the translational regulation, we used an in vitro model of cultured satellite cells derived from myostatin knock-out mice. Our results show that myostatin knock-out myotubes are larger than control myotubes and that this phenotype is associated with an increased activation of the Akt/mTOR signaling pathway, a known regulator of muscle hypertrophy. These results demonstrate that hypertrophy due to myostatin deficiency is preserved in vitro and suggest that myostatin deletion results in an increased protein synthesis. Accordingly, the rates of global RNA content, polysome formation and protein synthesis are all increased in myostatin-deficient myotubes while they are counteracted by the addition of recombinant myostatin. We furthermore demonstrated that genetic deletion of myostatin stimulates cap-dependent translation by positively regulating assembly of the translation preinitiation complex. Together the data indicate that myostatin controls muscle hypertrophy in part by regulating protein synthesis initiation rates, that is, translational efficiency.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Miostatina/antagonistas & inhibidores , Biosíntesis de Proteínas , Animales , Secuencia de Bases , Western Blotting , Línea Celular , Cartilla de ADN , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/enzimología , Miostatina/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
11.
Commun Biol ; 4(1): 194, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580198

RESUMEN

Sarcopenia, the age-related loss of skeletal muscle mass and function, affects 5-13% of individuals aged over 60 years. While rodents are widely-used model organisms, which aspects of sarcopenia are recapitulated in different animal models is unknown. Here we generated a time series of phenotypic measurements and RNA sequencing data in mouse gastrocnemius muscle and analyzed them alongside analogous data from rats and humans. We found that rodents recapitulate mitochondrial changes observed in human sarcopenia, while inflammatory responses are conserved at pathway but not gene level. Perturbations in the extracellular matrix are shared by rats, while mice recapitulate changes in RNA processing and autophagy. We inferred transcription regulators of early and late transcriptome changes, which could be targeted therapeutically. Our study demonstrates that phenotypic measurements, such as muscle mass, are better indicators of muscle health than chronological age and should be considered when analyzing aging-related molecular data.


Asunto(s)
Músculo Esquelético/metabolismo , Sarcopenia/genética , Sarcopenia/metabolismo , Transcriptoma , Factores de Edad , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Composición Corporal , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Fenotipo , Ratas , Sarcopenia/patología , Sarcopenia/fisiopatología , Transducción de Señal , Especificidad de la Especie
12.
J Cachexia Sarcopenia Muscle ; 11(1): 259-273, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31697050

RESUMEN

BACKGROUND: The balance between protein synthesis and degradation (proteostasis) is a determining factor for muscle size and function. Signalling via the mammalian target of rapamycin complex 1 (mTORC1) regulates proteostasis in skeletal muscle by affecting protein synthesis and autophagosomal protein degradation. Indeed, genetic inactivation of mTORC1 in developing and growing muscle causes atrophy resulting in a lethal myopathy. However, systemic dampening of mTORC1 signalling by its allosteric inhibitor rapamycin is beneficial at the organismal level and increases lifespan. Whether the beneficial effect of rapamycin comes at the expense of muscle mass and function is yet to be established. METHODS: We conditionally ablated the gene coding for the mTORC1-essential component raptor in muscle fibres of adult mice [inducible raptor muscle-specific knockout (iRAmKO)]. We performed detailed phenotypic and biochemical analyses of iRAmKO mice and compared them with muscle-specific raptor knockout (RAmKO) mice, which lack raptor in developing muscle fibres. We also used polysome profiling and proteomics to assess protein translation and associated signalling in skeletal muscle of iRAmKO mice. RESULTS: Analysis at different time points reveal that, as in RAmKO mice, the proportion of oxidative fibres decreases, but slow-type fibres increase in iRAmKO mice. Nevertheless, no significant decrease in body and muscle mass or muscle fibre area was detected up to 5 months post-raptor depletion. Similarly, ex vivo muscle force was not significantly reduced in iRAmKO mice. Despite stable muscle size and function, inducible raptor depletion significantly reduced the expression of key components of the translation machinery and overall translation rates. CONCLUSIONS: Raptor depletion and hence complete inhibition of mTORC1 signalling in fully grown muscle leads to metabolic and morphological changes without inducing muscle atrophy even after 5 months. Together, our data indicate that maintenance of muscle size does not require mTORC1 signalling, suggesting that rapamycin treatment is unlikely to negatively affect muscle mass and function.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Músculo Esquelético/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Noqueados , Conducta Sedentaria , Transducción de Señal
13.
Trials ; 21(1): 740, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843075

RESUMEN

BACKGROUND: Critically ill patients rapidly develop muscle wasting resulting in sarcopenia, long-term disability and higher mortality. Bolus nutrition (30-60 min period), whilst having a similar incidence of aspiration as continuous feeding, seems to provide metabolic benefits through increased muscle protein synthesis due to higher leucine peaks. To date, clinical evidence on achievement of nutritional goals and influence of bolus nutrition on skeletal muscle metabolism in ICU patients is lacking. The aim of the Pro BoNo study (Protein Bolus Nutrition) is to compare intermittent and continuous enteral feeding with a specific high-protein formula. We hypothesise that target quantity of protein is reached earlier (within 36 h) by an intermittent feeding protocol with a favourable influence on muscle protein synthesis. METHODS: Pro BoNo is a prospective randomised controlled study aiming to compare the impact of intermittent and continuous enteral feeding on preventing muscle wasting in 60 critically ill patients recruited during the first 48 h after ICU admission. The primary outcome measure is the time until the daily protein target (≥ 1.5 g protein/kg bodyweight/24 h) is achieved. Secondary outcome measures include tolerance of enteral feeding and evolution of glucose, urea and IGF-1. Ultrasound and muscle biopsy of the quadriceps will be performed. DISCUSSION: The Basel Pro BoNo study aims to collect innovative data on the effect of intermittent enteral feeding of critically ill patients on muscle wasting. TRIAL REGISTRATION: ClinicalTrials.gov NCT03587870 . Registered on July 16, 2018. Swiss National Clinical Trials Portal SNCTP000003234. Last updated on July 24, 2019.


Asunto(s)
Enfermedad Crítica , Proteínas en la Dieta/administración & dosificación , Nutrición Enteral/métodos , Alimentos Formulados , Enfermedad Crítica/terapia , Humanos , Unidades de Cuidados Intensivos , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto
14.
Nat Commun ; 11(1): 4510, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908143

RESUMEN

With human median lifespan extending into the 80s in many developed countries, the societal burden of age-related muscle loss (sarcopenia) is increasing. mTORC1 promotes skeletal muscle hypertrophy, but also drives organismal aging. Here, we address the question of whether mTORC1 activation or suppression is beneficial for skeletal muscle aging. We demonstrate that chronic mTORC1 inhibition with rapamycin is overwhelmingly, but not entirely, positive for aging mouse skeletal muscle, while genetic, muscle fiber-specific activation of mTORC1 is sufficient to induce molecular signatures of sarcopenia. Through integration of comprehensive physiological and extensive gene expression profiling in young and old mice, and following genetic activation or pharmacological inhibition of mTORC1, we establish the phenotypically-backed, mTORC1-focused, multi-muscle gene expression atlas, SarcoAtlas (https://sarcoatlas.scicore.unibas.ch/), as a user-friendly gene discovery tool. We uncover inter-muscle divergence in the primary drivers of sarcopenia and identify the neuromuscular junction as a focal point of mTORC1-driven muscle aging.


Asunto(s)
Envejecimiento/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fibras Musculares Esqueléticas/patología , Unión Neuromuscular/patología , Sarcopenia/patología , Envejecimiento/efectos de los fármacos , Animales , Línea Celular , Modelos Animales de Enfermedad , Electromiografía , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Captura por Microdisección con Láser , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Mioblastos , Unión Neuromuscular/efectos de los fármacos , Técnicas de Placa-Clamp , RNA-Seq , Sarcopenia/genética , Sarcopenia/fisiopatología , Sarcopenia/prevención & control , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirolimus/administración & dosificación
15.
Cell Signal ; 20(1): 21-30, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17716864

RESUMEN

Cellular homeostasis depends upon the strict regulation of responses to external stimuli, such as signalling cascades triggered by nutrients and growth factors, and upon cellular metabolism. One of the major molecules coordinating complex signalling pathways is protein kinase B (PKB), a serine/threonine kinase also known as Akt. The number of substrates known to be phosphorylated by PKB and its interacting partners, as well as our broad understanding of how PKB is implicated in responses to growth factors, metabolic pathways, proliferation, and cell death via apoptosis is constantly increasing. Activated by the insulin/growth factor-phosphatidylinositol 3-kinase (PI3K) cascade, PKB triggers events that promote cell survival and prevent apoptosis. It is also now widely accepted that mitochondria are not just suppliers of ATP, but that they participate in regulatory and signalling events, responding to multiple physiological inputs and genetic stresses, and regulate both cell proliferation and death. Thus, mitochondria are recognized as important players in apoptotic events and it is logical to predict some form of interplay with PKB. In this review, we will summarize mechanisms by which PKB mediates its anti-apoptotic activities in cells and survey recent developments in understanding mitochondrial dynamics and their role during apoptosis.


Asunto(s)
Apoptosis/fisiología , Mitocondrias/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Animales , Supervivencia Celular/fisiología , Humanos , Ratones , Proteínas Proto-Oncogénicas c-mdm2/fisiología
16.
Sci Rep ; 9(1): 12249, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31439911

RESUMEN

Thyroid hormone is a major regulator of skeletal muscle development and repair, and also a key regulator of mitochondrial activity. We have previously identified a 43 kDa truncated form of the nuclear T3 receptor TRα1 (p43) which stimulates mitochondrial activity and regulates skeletal muscle features. However, its role in skeletal muscle regeneration remains to be addressed. To this end, we performed acute muscle injury induced by cardiotoxin in mouse tibialis in two mouse models where p43 is overexpressed in or depleted from skeletal muscle. The measurement of muscle fiber size distribution at different time point (up to 70 days) upon injury lead us to unravel requirement of the p43 signaling pathway for satellite cells dependent muscle regeneration; strongly delayed in the absence of p43; whereas the overexpression of the receptor enhances of the regeneration process. In addition, we found that satellite cells derived from p43-Tg mice display higher proliferation rates when cultured in vitro when compared to control myoblasts, whereas p43-/- satellites shows reduced proliferation capacity. These finding strongly support that p43 plays an important role in vivo by controling the duration of skeletal muscle regeneration after acute injury, possibly through the regulation of mitochondrial activity and myoblasts proliferation.


Asunto(s)
Mitocondrias/metabolismo , Músculo Esquelético/fisiopatología , Receptores alfa de Hormona Tiroidea/metabolismo , Animales , Proliferación Celular , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Receptores alfa de Hormona Tiroidea/genética
17.
Brain Pathol ; 29(3): 336-350, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30403311

RESUMEN

Diffuse gliomas progress by invading neighboring brain tissue to promote postoperative relapse. Transcription factor SOX2 is highly expressed in invasive gliomas and maps to chromosome region 3q26 together with the genes for PI3K/AKT signaling activator PIK3CA and effector molecules of mitochondria fusion and cell invasion, MFN1 and OPA1. Gene copy number analysis at 3q26 from 129 glioma patient biopsies revealed mutually exclusive SOX2 amplifications (26%) and OPA1 losses (19%). Both forced SOX2 expression and OPA1 inactivation increased LN319 glioma cell invasion in vitro and promoted cell dispersion in vivo in xenotransplanted D. rerio embryos. While PI3 kinase activity sustained SOX2 expression, pharmacological PI3K/AKT pathway inhibition decreased invasion and resulted in SOX2 nucleus-to-cytoplasm translocation in an mTORC1-independent manner. Chromatin immunoprecipitation and luciferase reporter gene assays together demonstrated that SOX2 trans-activates PIK3CA and OPA1. Thus, SOX2 activates PI3K/AKT signaling in a positive feedback loop, while OPA1 deletion is interpreted to counteract OPA1 trans-activation. Remarkably, neuroimaging of human gliomas with high SOX2 or low OPA1 genomic imbalances revealed significantly larger necrotic tumor zone volumes, corresponding to higher invasive capacities of tumors, while autologous necrotic cells are capable of inducing higher invasion in SOX2 overexpressing or OPA1 knocked-down relative to parental LN319. We thus propose necrosis volume as a surrogate marker for the assessment of glioma invasive potential. Whereas glioma invasion is activated by a PI3K/AKT-SOX2 loop, it is reduced by a cryptic invasion suppressor SOX2-OPA1 pathway. Thus, PI3K/AKT-SOX2 and mitochondria fission represent connected signaling networks regulating glioma invasion.


Asunto(s)
Cromosomas Humanos Par 3 , Fosfatidilinositol 3-Quinasa Clase I/genética , GTP Fosfohidrolasas/genética , Glioma/genética , Factores de Transcripción SOXB1/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Variaciones en el Número de Copia de ADN , GTP Fosfohidrolasas/metabolismo , Glioma/metabolismo , Glioma/patología , Células HEK293 , Humanos , Necrosis/genética , Invasividad Neoplásica , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal
18.
Mol Cell Biol ; 24(4): 1809-21, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14749395

RESUMEN

The transcription factors MyoD and Myf-5 control myoblast identity and differentiation. MyoD and Myf-5 manifest opposite cell cycle-specific expression patterns. Here, we provide evidence that MyoD plays a pivotal role at the G(2)/M transition by controlling the expression of p21(Waf1/Cip1) (p21), which is believed to regulate cyclin B-Cdc2 kinase activity in G(2). In growing myoblasts, MyoD reaccumulates during G(2) concomitantly with p21 before entry into mitosis; MyoD is phosphorylated on Ser5 and Ser200 by cyclin B-Cdc2, resulting in a decrease of its stability and down-regulation of both MyoD and p21. Inducible expression of a nonphosphorylable MyoD A5/A200 enhances the MyoD interaction with the coactivator P/CAF, thereby stimulating the transcriptional activation of a luciferase reporter gene placed under the control of the p21 promoter. MyoD A5/A200 causes sustained p21 expression, which inhibits cyclin B-Cdc2 kinase activity in G(2) and delays M-phase entry. This G(2) arrest is not observed in p21(-/-) cells. These results show that in cycling cells MyoD functions as a transcriptional activator of p21 and that MyoD phosphorylation is required for G(2)/M transition.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Mitosis , Mutación/genética , Proteína MioD/genética , Proteína MioD/metabolismo , Animales , Línea Celular , Ciclina B/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ciclinas/metabolismo , Fase G2 , Regulación de la Expresión Génica , Histona Desacetilasa 1 , Histona Desacetilasas , Ratones , Modelos Biológicos , Músculo Esquelético , Proteína MioD/química , Mioblastos/citología , Mioblastos/enzimología , Mioblastos/metabolismo , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Factores de Tiempo , Activación Transcripcional
20.
Skelet Muscle ; 6: 13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27004103

RESUMEN

BACKGROUND: The mammalian target of rapamycin complex 1 (mTORC1) is a central node in a network of signaling pathways controlling cell growth and survival. This multiprotein complex integrates external signals and affects different nutrient pathways in various organs. However, it is not clear how alterations of mTORC1 signaling in skeletal muscle affect whole-body metabolism. RESULTS: We characterized the metabolic phenotype of young and old raptor muscle knock-out (RAmKO) and TSC1 muscle knock-out (TSCmKO) mice, where mTORC1 activity in skeletal muscle is inhibited or constitutively activated, respectively. Ten-week-old RAmKO mice are lean and insulin resistant with increased energy expenditure, and they are resistant to a high-fat diet (HFD). This correlates with an increased expression of histone deacetylases (HDACs) and a downregulation of genes involved in glucose and fatty acid metabolism. Ten-week-old TSCmKO mice are also lean, glucose intolerant with a decreased activation of protein kinase B (Akt/PKB) targets that regulate glucose transporters in the muscle. The mice are resistant to a HFD and show reduced accumulation of glycogen and lipids in the liver. Both mouse models suffer from a myopathy with age, with reduced fat and lean mass, and both RAmKO and TSCmKO mice develop insulin resistance and increased intramyocellular lipid content. CONCLUSIONS: Our study shows that alterations of mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism. While both inhibition and constitutive activation of mTORC1 induce leanness and resistance to obesity, changes in the metabolism of muscle and peripheral organs are distinct. These results indicate that a balanced mTORC1 signaling in the muscle is required for proper metabolic homeostasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Metabolismo Energético , Complejos Multiproteicos/metabolismo , Músculo Esquelético/enzimología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Edad , Animales , Biomarcadores/sangre , Glucemia/metabolismo , Composición Corporal , Dieta Alta en Grasa , Genotipo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Insulina/sangre , Resistencia a la Insulina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Noqueados , Enfermedades Musculares/enzimología , Enfermedades Musculares/genética , Enfermedades Musculares/fisiopatología , Obesidad/enzimología , Obesidad/genética , Obesidad/prevención & control , Fenotipo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Reguladora Asociada a mTOR , Transducción de Señal , Delgadez/enzimología , Delgadez/genética , Factores de Tiempo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA