Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141763

RESUMEN

The metal halide perovskite nanocrystals exhibit a remarkable tolerance to midgap defect states, resulting in high photoluminescence quantum yields. However, the potential of these nanocrystals for applications in display devices is hindered by the suppression of biexcitonic emission due to various Auger recombination processes. By adopting single-particle photoluminescence spectroscopy, herein, we establish that the biexcitonic quantum efficiency increases with the increase in the number of facets on cesium lead bromide perovskite nanocrystals, progressing from cube to rhombic dodecahedron to rhombicuboctahedron nanostructures. The observed enhancement is attributed mainly to an increase in their surface polarity as the number of facets increases, which reduces the Coulomb interaction of charge carriers, thereby suppressing Auger recombination. Moreover, Auger recombination rate constants obtained from the time-gated photon correlation studies exhibited a discernible decrease as the number of facets increased. These findings underscore the significance of facet engineering in fine-tuning biexciton emission in metal halide perovskite nanocrystals.

2.
J Am Chem Soc ; 146(29): 20300-20311, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39005055

RESUMEN

Lead halide perovskite nanocrystals have been extensively studied in recent years as efficient optical materials for their bright and color-tunable emissions. However, these are mostly confined to their 3D nanocrystals and limited to the anisotropic nanostructures. By exploring the Cs-sublattice-induced metal(II) ion exchange with Pb(II), crack CsPbBr3 perovskite platelet nanocrystals having polar surfaces in all three directions are reported here, which remained different than reported standard square platelets. The crack platelets are also passivated with halides to enhance their brightness. Further, as these crack and passivated crack platelets have defects and polar surfaces, the exciton and biexciton generation in these platelets is investigated using femtosecond photoluminescence and transient absorption measurement at ambient as well as cryogenic temperatures, correlated with time-resolved single-particle photoluminescence spectroscopy, and compared with standard square platelets having nonpolar facets. These investigations revealed that the crack platelets and passivated crack platelets possess enhanced biexciton emission compared to square platelets due to the presence of polar surfaces in all three directions. These results provide insights into not only the design of the anisotropic nanostructures of ionic nanocrystals but also the possibility of tuning the single exciton to biexciton generation efficiency, which has potential applications in optoelectronic systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA