Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Environ Monit Assess ; 192(6): 365, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32409992

RESUMEN

The prevalence of emerging contaminants of concern in water regimes is very common these days. High anthropogenic intervention is leading to occurrence of various types of microcontaminants of concern in drinking water systems. Their removal using conventional form of treatment systems employed in water treatment plants is not widely researched upon. Their fate in the conventional as well as advanced water treatment system needs to be focused upon for efficient and safe water disposal. Some compounds may leave the system unchanged or some might transform into much more toxic byproduct. Moreover, understanding level of occurrence of these emerging contaminants in source water bodies is also quintessential for assessing their fate in treatment plant itself as well as in the final treated water. Here in this study, the occurrence and removal of various classes of emerging contaminants were investigated in a moving bed biofilm reactor (MBBR)-based advanced drinking water treatment plant (ADWTP) alongside one conventional drinking water treatment plant, both of which use River Yamuna as the source of water. Non-target analysis utilizing high-performance liquid chromatography combined with time of flight (HPLC-QToF) identified more than 300 compounds. Pharmaceuticals accounted for a major fraction (58%) of the identified compounds, followed by plasticizers and insecticides. Nine parent compound and their transformation products were additionally identified using solid-phase extraction followed by analysis using gas chromatography mass spectrometry and HPLC-QToF. The degradation pathway of the parent compounds in MBBR-based ADWTP was also analyzed in depth. The efficiency of each unit process of MBBR-based drinking water treatment plant was studied in terms of removal of few emerging contaminants. Pharmaceutical compound like diclofenac supposedly was persistent, even, toward the end of the treatment train. Semi-quantitative analysis revealed ineffective removal of pyridine, hydrochlorothiazide, and diethyl phthalate in the outlet of ADWTP. ADWTP was able to remove a few emerging contaminants, but a few were recalcitrant. Likewise, it was established that although some parent compounds were degraded, much more toxic transformation products were formed and were prevalent at the end of the treatment.


Asunto(s)
Reactores Biológicos , Contaminantes Químicos del Agua , Purificación del Agua , Biopelículas , Monitoreo del Ambiente , India , Ríos
2.
Environ Monit Assess ; 192(7): 445, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32564255

RESUMEN

The original version of this article unfortunately contains mistakes introduced during the production phase. Figures 7, 8, and 10 were incorrectly captured.

3.
Drug Discov Today ; 29(7): 104020, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740363

RESUMEN

Necroptosis has emerged as one of the crucial pathological processes involved in the regulation of cell death and inflammation in chronic obstructive pulmonary disease (COPD). Airway epithelial necroptosis is closely linked to COPD pathogenesis. Necroptotic lung cells can release damage-associated molecular patterns (DAMPs) that can initiate a robust inflammatory response. However, the underlying mechanism of necroptosis in COPD is still not clearly understood. Therefore, we aimed to explore the roles and mechanisms of receptor-interacting serine/threonine-protein kinase 1 (RIPK1)-mediated necroptosis in the regulation of inflammatory responses in COPD to provide insights into RIPK1-inhibitor drug discovery efforts and their therapeutic benefits in COPD.


Asunto(s)
Necroptosis , Enfermedad Pulmonar Obstructiva Crónica , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Humanos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Descubrimiento de Drogas
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166768, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37269984

RESUMEN

A unique immunological condition, pregnancy ensures fetus from maternal rejection, allows adequate fetal development, and protects against microorganisms. Infections during pregnancy may lead to devastating consequences for pregnant women and fetuses, resulting in the mother's death, miscarriage, premature childbirth, or neonate with congenital infection and severe diseases and defects. Epigenetic (heritable changes in gene expression) mechanisms like DNA methylation, chromatin modification, and gene expression modulation during gestation are linked with the number of defects in the fetus and adolescents. The feto-maternal crosstalk for fetal survival during the entire gestational stages are tightly regulated by various cellular pathways, including epigenetic mechanisms that respond to both internal as well outer environmental factors, which can influence the fetal development across the gestational stages. Due to the intense physiological, endocrinological, and immunological changes, pregnant women are more susceptible to bacterial, viral, parasitic, and fungal infections than the general population. Microbial infections with viruses (LCMV, SARS-CoV, MERS-CoV, and SARS-CoV-2) and bacteria (Clostridium perfringens, Coxiella burnetii, Listeria monocytogenes, Salmonella enteritidis) further increase the risk to maternal and fetal life and developmental outcome. If the infections remain untreated, the possibility of maternal and fetal death exists. This article focused on the severity and susceptibility to infections caused by Salmonella, Listeria, LCMV, and SARS-CoV-2 during pregnancy and their impact on maternal health and the fetus. How epigenetic regulation during pregnancy plays a vital role in deciding the fetus's developmental outcome under various conditions, including infection and other stress. A better understanding of the host-pathogen interaction, the characterization of the maternal immune system, and the epigenetic regulations during pregnancy may help protect the mother and fetus from infection-mediated outcomes.


Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Recién Nacido , Adolescente , Embarazo , Femenino , Humanos , Complicaciones Infecciosas del Embarazo/genética , COVID-19/genética , SARS-CoV-2 , Epigénesis Genética , Desarrollo Fetal
5.
Drug Discov Today ; 28(12): 103750, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37633326

RESUMEN

Inflammation and cell death processes positively control the organ homeostasis of an organism. Receptor-interacting protein kinase 1 (RIPK1), a member of the RIPK family, is a crucial regulator of cell death and inflammation, and control homeostasis at the cellular and tissue level. Necroptosis, a programmed form of necrosis-mediated cell death and tumor necrosis factor (TNF)-induced necrotic cell death, is mostly regulated by RIPK1 kinase activity. Thus, RIPK1 has recently emerged as an upstream kinase that controls multiple cellular pathways and participates in regulating inflammation and cell death. All the major cell types in the central nervous system (CNS) have been found to express RIPK1. Selective inhibition of RIPK1 has been shown to prevent neuronal cell death, which could ultimately lead to a significant reduction of neurodegeneration and neuroinflammation. In addition, the kinase structure of RIPK1 is highly conducive to the development of specific pharmacological small-molecule inhibitors. These factors have led to the emergence of RIPK1 as an important therapeutic target for Alzheimer's disease (AD).


Asunto(s)
Enfermedad de Alzheimer , Apoptosis , Humanos , Apoptosis/fisiología , Enfermedad de Alzheimer/tratamiento farmacológico , Necrosis , Proteínas Quinasas/metabolismo , Inflamación/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
6.
Curr Alzheimer Res ; 20(1): 38-47, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138423

RESUMEN

BACKGROUND: Microglial overactivation promotes the production of various second messengers and inflammatory markers in brain tissue, resulting in neuroinflammation and neurodegeneration, which may lead to cognitive decline. The cyclic nucleotides are one of the important second messengers involved in the regulation of neurogenesis, synaptic plasticity, and cognition. The levels of these cyclic nucleotides are maintained by phosphodiesterase enzyme isoforms, particularly PDE4B, in the brain. An imbalance between PDE4B levels and cyclic nucleotides may lead to aggravating neuroinflammation. METHODS: Lipopolysaccharides (LPS) were administered intraperitoneally on alternate days for 7 days at a dose of 500 µg/kg in mice, which triggered systemic inflammation. This may lead to the activation of glial cells and may activate oxidative stress and neuroinflammatory markers in brain tissue. Furthermore, oral administration of roflumilast (0.1, 0.2, and 0.4 mg/kg) in this model ameliorated oxidative stress markers, neuroinflammation and improved neurobehavioral parameters in these animals. RESULTS: The detrimental effect of LPS increased oxidative stress, AChE enzyme levels, and decreased catalase levels in brain tissues, along with memory impairment in animals. Moreover, it also enhanced the activity and expression of the PDE4B enzyme, resulting in a decline in cyclic nucleotide levels. Furthermore, treatment with roflumilast improved the cognitive decline, decreased AChE enzyme level, and increased the catalase enzyme level. Roflumilast also reduced the PDE4B expression in a dose-dependent manner, which LPS up-regulated. CONCLUSION: Roflumilast has shown an anti-neuroinflammatory effect and reversed the cognitive decline in LPS-induced mice model.


Asunto(s)
Lipopolisacáridos , Enfermedades Neuroinflamatorias , Ratones , Animales , Lipopolisacáridos/toxicidad , Catalasa/metabolismo , Catalasa/farmacología , Modelos Animales de Enfermedad , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Encéfalo/metabolismo , Nucleótidos Cíclicos/metabolismo , Nucleótidos Cíclicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA