Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(41): 23517-23525, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34642728

RESUMEN

The electronic properties of a diboron molecule, namely bis(catecholato)diboron (2-(1,3,2-benzodioxaborol-2-yl)-1,3,2-benzodioxaborole) (B2Cat2), have been studied by comparing the results of photoemission (XPS) and near edge X-ray absorption spectroscopy (NEXAFS) experiments with the outcome of DFT calculations. The B 1s, C 1s and O 1s K-edges have been investigated for both the isolated gas phase molecule and the adsorbed one on the Au(111) surface. The main features of the polarized NEXAFS spectra at each of the three edges considered are not significantly affected by the presence of the substrate, with respect to the isolated molecule, indicating that the molecule-gold interaction is weak. Moreover, the comparison between the observed dichroism in the NEXAFS spectra of the adsorbed B2Cat2 and that in the NEXAFS spectra of the isolated molecule has confirmed the orbital symmetry assigned in the gas phase absorption spectra. The transitions to π(B-B) bonding and π*(B-B) anti-bonding final states represent the most relevant probe of the chemistry of the B2Cat2 molecule. We show that their theoretical description requires that the treatment of the relaxation changes among different excited state configurations, which we successfully implemented by using ΔSCF-DFT (ΔSCF) calculations.

2.
J Phys Chem A ; 122(44): 8745-8761, 2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30351097

RESUMEN

The near-edge x-ray-absorption fine-structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) spectra of benzo[ b]thiophene (BBT) and dibenzothiophene (DBT) in the gas phase have been measured at the carbon K-edge and sulfur LII,III-edge regions. The assignment of the spectral features has been provided by theoretical calculations based on density functional theory (DFT) and its time-dependent generalization (TDDFT) in the linear response regime. Observed trends in computed C 1s and S 2p ionization potentials (IPs) have been rationalized in terms of both the inductive effects due to the presence of S and the increased π-electrons delocalization arising from the benzo-annulation process. The analysis of the NEXAFS carbon K-edge and sulfur LII,III-edge regions provided information on both low-lying delocalized virtual π orbitals, and higher-lying localized σ*(C-S) states. The evolution of the NEXAFS carbon K-edge spectral features along the series thiophene (T) and derivatives, BBT and DBT, is informative of a stabilizing effect due to increased aromaticity. This effect is however more pronounced in going from T to BBT compared to the introduction of a second annulated phenyl ring in DBT. The nature of the most intense sulfur LII,III-edge NEXAFS spectral features is instead conserved along the series reflecting thus the localized nature of the virtual states involved in the S 2p core-excitation process.

3.
J Chem Phys ; 147(24): 244301, 2017 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-29289119

RESUMEN

The Near-Edge X-ray-Absorption Fine-Structure (NEXAFS) and X-ray Photoemission Spectroscopy (XPS) of short-chain oligothiophenes (thiophene, 2,2'-bithiophene, and 2,2':5',2″-terthiophene) in the gas phase have been measured in the sulfur L2,3-edge region. The assignment of the spectral features is based on the relativistic two-component zeroth-order regular approximation time dependent density functional theory approach. The calculations allow us to estimate both the contribution of the spin-orbit splitting and of the molecular-field splitting to the sulfur binding energies and give results in good agreement with the experimental measurements. The deconvolution of the calculated S2p NEXAFS spectra into the two manifolds of excited states converging to the LIII and LII edges facilitates the attribution of the spectral structures. The main S2p NEXAFS features are preserved along the series both as concerns the energy positions and the nature of the transitions. This behaviour suggests that the electronic and geometrical environment of the sulfur atom in the three oligomers is relatively unaffected by the increasing chain length. This trend is also observed in the XPS spectra. The relatively simple structure of S2p NEXAFS spectra along the series reflects the localized nature of the virtual states involved in the core excitation process.

4.
J Phys Chem Lett ; 14(7): 1941-1948, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36787099

RESUMEN

Effects of the conformational dynamics of 2-PET protective ligands on the electronic circular dichroism (ECD) of the chiral Au38(SC2H4Ph)24 cluster are investigated. We adopt a computational protocol in which ECD spectra are calculated via the first principle polTDDFT approach on a series of conformations extracted from MD simulations by using Essential Dynamics (ED) analysis, and then properly weighted to predict the final spectrum. We find that the experimental spectral features are well reproduced, whereas significant discrepancies arise when the spectrum is calculated using the experimental X-ray structure. This result unambiguously demonstrates the need to account for the conformational effects in the ECD modeling of chiral nanoclusters. The present procedure proved to be able of capturing the essential conformational features of the dynamic Au38(SC2H4Ph)24 system, opening the possibility to model the ECD of soluble chiral nanoclusters in a realistic way.

5.
Phys Chem Chem Phys ; 13(27): 12517-28, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21666904

RESUMEN

The electronic structure of epichlorohydrin is investigated in the whole valence region by a combined experimental and theoretical study. The issue of controversial assignments of the molecular electronic structure is here addressed. Photoelectron spectra (PES) and Threshold Photoelectron spectra (TPES) of room temperature molecules in the gas phase are recorded. Geometries and energies of the stable conformers due to internal rotation of the C-C-C-Cl dihedral angle, gauche-II (g-II), gauche-I (g-I), and cis, are calculated, and the effect of the conformational flexibility on the photoionization energetics is studied by DFT and 2h-1p Configuration Interaction (CI) methods. Strong breakdown of the Koopmans Theorem (KT) is obtained for the four outermost ionizations, which are further investigated by higher level ab initio calculations. The full assignment of the spectrum is put on a firm basis by the combination of experimental and theoretical results. The orbital composition from correlated calculations is found closer to the DFT orbitals, which are then used to analyze the electronic structure of the molecule. The Highest Occupied Molecular Orbital (HOMO) and HOMO--2 are n(O)/n(Cl) mixed orbitals. The nature of each valence MO is generally preserved in all the conformers, although the magnitude of the n(O)/n(Cl) mixing in HOMO and HOMO--2 varies to some extent with the C-C-C-Cl dihedral angle. The low energy part of the HOMO PE band is predicted to be substantially affected by the conformational flexibility, as experimentally observed in the spectra. The rest of the spectrum is described in terms of the dominant conformer g-II, and a good agreement between experiment and theory is found. The inner-valence PE spectrum is characterized by satellite structures, due to electron correlation effects, which are interpreted by means of 2h-1p CI calculations.


Asunto(s)
Epiclorhidrina/química , Electrones , Gases/química , Espectroscopía de Fotoelectrones , Teoría Cuántica , Temperatura
6.
J Chem Theory Comput ; 17(10): 6314-6329, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34486881

RESUMEN

In this work, a theoretical and computational set of tools to study and analyze time-resolved electron dynamics in molecules, under the influence of one or more external pulses, is presented. By coupling electronic-structure methods with the resolution of the time-dependent Schrödinger equation, we developed and implemented the time-resolved induced density of the electronic wavepacket, the time-resolved formulation of the differential projection density of states (ΔPDOS), and of transition contribution map (TCM) to look at the single-electron orbital occupation and localization change in time. Moreover, to further quantify the possible charge transfer, we also defined the energy-integrated ΔPDOS and the fragment-projected TCM. We have used time-dependent density-functional theory (TDDFT), as implemented in ADF software, and the Bethe-Salpeter equation, as provided by MolGW package, for the description of the electronic excited states. This suite of postprocessing tools also provides the time evolution of the electronic states of the system of interest. To illustrate the usefulness of these postprocessing tools, excited-state populations have been computed for HBDI (the chromophore of GFP) and DNQDI molecules interacting with a sequence of two pulses. Time-resolved descriptors have been applied to study the time-resolved electron dynamics of HBDI, DNQDI, LiCN (being a model system for dipole switching upon highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) electronic excitation), and Ag22. The computational analysis tools presented in this article can be employed to help the interpretation of fast and ultrafast spectroscopies on molecular, supramolecular, and composite systems.

7.
J Chem Phys ; 127(20): 204106, 2007 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18052418

RESUMEN

A procedure for the automatic construction of Born-Oppenheimer (BO) potential energy and molecular property surfaces in rectilinear normal coordinates is presented and its suitability and accuracy when combined with vibrational structure calculations are assessed. The procedure relies on a hierarchical n-mode representation of the BO potential energy or molecular property surface, where the n-mode term of the sequence of potentials/molecular properties includes only the couplings between n or less vibrational degrees of freedom. Each n-mode cut of the energy/molecular property surface is first evaluated in a grid of points with ab initio electronic structure methods. The ab initio data are then spline interpolated and a subsequent polynomial fitting provides an analytical semiglobal representation for use in vibrational structure programs. The implementation of the procedure is outlined and the accuracy of the method is tested on water and difluoromethane. Strategies for improving the proposed algorithm are also discussed.

8.
J Chem Phys ; 127(23): 234317, 2007 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-18154392

RESUMEN

Photoionization dynamics of the RNA base uracil is studied in the framework of density functional theory. The photoionization calculations take advantage of a newly developed parallel version of a multicentric approach to the calculation of the electronic continuum spectrum which uses a set of B-spline radial basis functions and a Kohn-Sham density functional Hamiltonian. Both valence and core ionizations are considered. Scattering resonances in selected single-particle ionization channels are classified by the symmetry of the resonant state and the peak energy position in the photoelectron kinetic energy scale; the present results highlight once more the site specificity of core ionization processes. We further suggest that the resonant structures previously characterized in low-energy electron collision experiments are partly shifted below threshold by the photoionization processes. A critical evaluation of the theoretical results provides a guide for future experimental work on similar biosystems.


Asunto(s)
Modelos Químicos , Teoría Cuántica , Uracilo/química , Simulación por Computador , Enlace de Hidrógeno , Estructura Molecular , Fotoquímica
9.
J Chem Phys ; 124(21): 214313, 2006 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-16774413

RESUMEN

Correlation in the photoionization dynamics of carbon tetrafluoride is studied in the framework of the time-dependent density-functional theory (TDDFT) approach by employing a multicentric basis set expansion of the scattering wave function linear combination of atomic orbitals (LCAO) TDDFT. Results obtained with the statistical average of orbital potentials and LB94 exchange-correlation (xc) potentials are compared with photoabsorption, photoionization, and electron-scattering experiments as well as with past theoretical calculations. Inadequacies in both the V(xc) parametrizations employed have been suggested from the analysis of the intensity plots for the D2A1 ionization. The formation of resonant scattering states in selected continuum channels has been studied through the analysis of the dipole-prepared scattering wave function; our findings are then compared with results of electron-scattering calculations. Overall, the LCAO-TDDFT results highlight the effectiveness of the approach for the calculation of the unbound spectrum of fairly large molecules.

10.
J Chem Phys ; 124(11): 114306, 2006 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-16555887

RESUMEN

The B-spline linear combination of atomic orbitals method has been employed to study the valence and core photoionization dynamics of SF6. The cross section and asymmetry parameter profiles calculated at the time dependent density functional theory level have been found to be in fairly nice agreement with the experimental data, with the quality of the exchange-correlation statistical average of orbital potential results superior to the Van Leeuwen-Baerends 94 (LB94) ones [Phys. Rev. A 49, 2421 (1994)]. The role of response effects has been identified by a comparison of the time dependent density functional theory results with the Kohn-Sham ones interchannel coupling effects and autoionization resonances play an important role at low kinetic energies. Prominent shape resonances features have been analyzed in terms of "dipole prepared" continuum orbitals and interpreted as due to a large angular momentum centrifugal barrier as well as anisotropic (nonspherical) molecular effective potential. Finally, the method has been proven numerically stable, robust, and efficient, thanks to a noniterative implementation of the time dependent density functional theory equations and suitability of the multicentric B-spline basis set to describe continuum states from outer valence to deep core states.

11.
Phys Chem Chem Phys ; 8(37): 4300-10, 2006 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-16986073

RESUMEN

We have performed Time Dependent Density Functional Theory (TDDFT) calculations employing a cluster model of the core excitation spectra of vanadium pentoxide, V(2)O(5). The excitation energies and dipole transition moments are determined for all the core edges, vanadium and oxygen K- and vanadium L-edges, treating them at the same level of accuracy. The agreement between the TDDFT theoretical spectra and the experimental data is rather good, particularly at the V and O K-edges. A quantitative reproduction of the fine pre-edge structures appears more difficult for the V L-edge. The comparison between the TDDFT results and the results obtained at the simpler one electron Kohn-Sham (KS) level indicates that the V and O K edges can be correctly described within a single particle approximation (KS), while the strong modification of the V L-edge structures from the KS to the TDDFT description emphasizes the importance of configuration mixing to treat the metal 2p excitations. The origin of the calculated pre-edge features is analyzed in detail with the help of the atom-projected density-of-states of the unoccupied levels. This analysis emphasizes the V 3d dominant character of the final states in the conduction band, probed by the V L-absorption. The strong octahedral distortion of the V(2)O(5) structure allows the mixing of the 3d state with the V 4p components, which are mapped by the oscillator strength in the V K-edge spectrum. The high intensity of the O 1s transitions reflects the presence of a significant O 2p component in the conduction band.

12.
Inorg Chem ; 39(15): 3403-13, 2000 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-11196881

RESUMEN

The accurate crystal structure determinations of MeCbl (1), CNCbl.2LiCl (2), and CNCbl.KCl (3), based on synchrotron diffraction data collected at 100 K and using high-quality single crystals, are reported. Refinements gave R1 indices of 0.0834 (1), 0.0434 (2), and 0.0773 (3). The influence of the water of crystallization and ion content on the crystal packing of these and other cobalamins (XCbl) is discussed, and a relationship between the crystal packing and the corrin side chain conformations is presented. An analysis of the bond lengths within the corrin moiety, based on 13 accurate structures with several X groups, shows that the trend of the C-C and C-N distances can be interpreted in terms of electronic and steric factors. The variation in structural, NMR and IR spectroscopic, and electrochemical properties are compared with those of cobaloximes, the B12 model, when X is varied. This comparison indicates that the pi-back-donation from metal to the CN axial ligand and the transmission of the trans influence of the X ligand are more effective in cobalamins than in cobaloximes. These findings are consistent with a significantly greater availability of electron charge on Co in cobalamins, and, hence, a semiquantitative evaluation of the electronic difference between the cobalt centers in the two systems is allowed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA