Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(5): 873-878, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339499

RESUMEN

Interactions between supercritical (sc) CO2 and minerals are important when CO2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubation with scCO2), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO2, can increase CO2 storage capacity by up to ∼30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO2 uptake constitutes a previously unrecognized potential trapping mechanism.

2.
Langmuir ; 35(29): 9611-9621, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31241970

RESUMEN

Multiphase flow phenomena in nanoporous media are encountered in many science and engineering applications. Shales, for example, possessing complex nanopore networks, have considerable importance as source rocks for unconventional oil and gas production and as low-permeability seals for geologic carbon sequestration or nuclear waste disposal. This study presents a theoretical investigation of the processes controlling adsorption, capillary condensation, and imbibition in such nanoporous media, with a particular focus on understanding the effects of fluid-fluid and fluid-pore wall interaction forces in the interconnected nanopore space. Building on a new theoretical framework, we developed a numerical model for the multiphase nanoporous flow and tested it against water vapor uptake measurements conducted on a shale core sample. The model, which is based on the density functional approach, explicitly includes the relevant interaction forces among fluids and solids while allowing for a continuum representation of the porous medium. The experimental data include gravimetrically measured mass changes in an initially dry core sample exposed to varying levels of relative humidity, starting with a low relative humidity (rh = 0.31) followed by a period of a higher relative humidity (rh = 0.81). During this process, water vapor uptake in the dry core is recorded as a function of time. Our model suggests that, under low rh conditions, the flow within the shale sample is controlled by adsorption- and diffusion-type processes. After increasing the rh to 0.81, the uptake of water vapor becomes more significant, and according to our model, this can be explained by capillary condensation followed by immiscible displacement in the core sample. It appears that strong fluid-pore wall attractive forces cause condensation near the inlet, which then induces water imbibition further into sample.

3.
Environ Sci Technol ; 51(8): 4338-4346, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28350957

RESUMEN

Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted experiments in quartz sands at low volumetric water contents (θ) to quantify ion diffusion within adsorbed films. At the lowest water contents, we employed fixed relative humidities to control water films at nm thicknesses. Diffusion profiles for Rb+ and Br- in unsaturated sand packs were measured with a synchrotron X-ray microprobe, and inverse modeling was used to determine effective diffusion coefficients, De, as low as ∼9 × 10-15 m2 s-1 at θ = 1.0 × 10-4 m3 m-3, where the film thickness = 0.9 nm. Given that the diffusion coefficients (Do) of Rb+ and Br- in bulk water (30 °C) are both ∼2.4 × 10-9 m2 s-1, we found the impedance factor f = De/(θDo) is equal to 0.03 ± 0.02 at this very low saturation, in agreement with the predicted influence of interface tortuosity (τa) for diffusion along grain surfaces. Thus, reduced cross-sectional area (θ) and tortuosity largely accounted for the more than 5 orders of magnitude decrease in De relative to Do as desaturation progressed down to nanoscale films.


Asunto(s)
Movimientos del Agua , Agua , Difusión , Porosidad , Dióxido de Silicio
4.
Environ Sci Technol ; 51(6): 3307-3317, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28218533

RESUMEN

Three-dimensional variably saturated flow and multicomponent biogeochemical reactive transport modeling, based on published and newly generated data, is used to better understand the interplay of hydrology, geochemistry, and biology controlling the cycling of carbon, nitrogen, oxygen, iron, sulfur, and uranium in a shallow floodplain. In this system, aerobic respiration generally maintains anoxic groundwater below an oxic vadose zone until seasonal snowmelt-driven water table peaking transports dissolved oxygen (DO) and nitrate from the vadose zone into the alluvial aquifer. The response to this perturbation is localized due to distinct physico-biogeochemical environments and relatively long time scales for transport through the floodplain aquifer and vadose zone. Naturally reduced zones (NRZs) containing sediments higher in organic matter, iron sulfides, and non-crystalline U(IV) rapidly consume DO and nitrate to maintain anoxic conditions, yielding Fe(II) from FeS oxidative dissolution, nitrite from denitrification, and U(VI) from nitrite-promoted U(IV) oxidation. Redox cycling is a key factor for sustaining the observed aquifer behaviors despite continuous oxygen influx and the annual hydrologically induced oxidation event. Depth-dependent activity of fermenters, aerobes, nitrate reducers, sulfate reducers, and chemolithoautotrophs (e.g., oxidizing Fe(II), S compounds, and ammonium) is linked to the presence of DO, which has higher concentrations near the water table.


Asunto(s)
Agua Subterránea/química , Uranio/química , Sedimentos Geológicos/química , Nitratos , Oxidación-Reducción , Sulfatos/química , Contaminantes Químicos del Agua , Contaminantes Radiactivos del Agua
5.
J Environ Sci (China) ; 57: 24-32, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28647245

RESUMEN

In order to understand the transport and humification processes of dissolved organic matter (DOM) within sediments of a semi-arid floodplain at Rifle, Colorado, fluorescence excitation-emission matrix (EEM) spectroscopy, humification index (HIX) and specific UV absorbance (SUVA) at 254nm were applied for characterizing depth and seasonal variations of DOM composition. Results revealed that late spring snowmelt leached relatively fresh DOM from plant residue and soil organic matter down into the deeper vadose zone (VZ). More humified DOM is preferentially adsorbed by upper VZ sediments, while non- or less-humified DOM was transported into the deeper VZ. Interestingly, DOM at all depths undergoes rapid biological humification process evidenced by the products of microbial by-product-like (i.e., tyrosine-like and tryptophan-like) matter in late spring and early summer, particularly in the deeper VZ, resulting in more humified DOM (e.g., fulvic-acid-like and humic-acid-like substances) at the end of year. This indicates that DOM transport is dominated by spring snowmelt, and DOM humification is controlled by microbial degradation, with seasonal variations. It is expected that these relatively simple spectroscopic measurements (e.g., EEM spectroscopy, HIX and SUVA) applied to depth- and temporally-distributed pore-water samples can provide useful insights into transport and humification of DOM in other subsurface environments as well.


Asunto(s)
Monitoreo del Ambiente , Inundaciones/estadística & datos numéricos , Sustancias Húmicas/análisis , Suelo/química , Clima , Estaciones del Año
6.
Environ Sci Technol ; 49(12): 7208-17, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-25945400

RESUMEN

In geologic carbon sequestration, capillary pressure (Pc)-saturation (Sw) relations are needed to predict reservoir processes. Capillarity and its hysteresis have been extensively studied in oil-water and gas-water systems, but few measurements have been reported for supercritical (sc) CO2-water. Here, Pc-Sw relations of scCO2 displacing brine (drainage), and brine rewetting (imbibition) were studied to understand CO2 transport and trapping behavior under reservoir conditions. Hysteretic drainage and imbibition Pc-Sw curves were measured in limestone sands at 45 °C under elevated pressures (8.5 and 12.0 MPa) for scCO2-brine, and in limestone and dolomite sands at 23 °C (0.1 MPa) for air-brine using a new computer programmed porous plate apparatus. scCO2-brine drainage and imbibition curves shifted to lower Pc relative to predictions based on interfacial tension, and therefore deviated from capillary scaling predictions for hydrophilic interactions. Fitting universal scaled drainage and imbibition curves show that wettability alteration resulted from scCO2 exposure over the course of months-long experiments. Residual trapping of the nonwetting phases was determined at Pc = 0 during imbibition. Amounts of trapped scCO2 were significantly larger than for those for air, and increased with pressure (depth), initial scCO2 saturation, and time. These results have important implications for scCO2 distribution, trapping, and leakage potential.


Asunto(s)
Carbonato de Calcio/química , Dióxido de Carbono/química , Secuestro de Carbono , Fenómenos Geológicos , Magnesio/química , Presión , Sales (Química)/química , Porosidad , Temperatura , Factores de Tiempo , Humectabilidad
7.
Langmuir ; 28(21): 8001-9, 2012 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-22564064

RESUMEN

When supercritical carbon dioxide (scCO(2)) is injected into deep subsurface reservoirs, much of the affected volume consists of pores containing both water and scCO(2), with water films remaining as the mineral-wetting phase. Although water films can affect multiphase flow and mediate reactions at mineral surfaces, little is known about how film thicknesses depend on system properties. Here, the thicknesses of water films were estimated on the basis of considerations of capillary pressure needed for the entry of CO(2) and disjoining pressures in films resulting from van der Waals and electric double-layer interactions. Depth-dependent CO(2) and water properties were used to estimate Hamaker constants for water films on silica and smectite surfaces under CO(2) confinement. Dispersion interactions were combined with approximate solutions to the electric double layer film thickness-pressure relationship in a Derjaguin-Landau-Verwey-Overbeek (DLVO) analysis, with CO(2) as the confining fluid. Under conditions of elevated pressure, temperature, and salinity commonly associated with CO(2) sequestration, adsorbed water films in reservoir rock surfaces are typically predicted to be less than 10 nm in thickness. Decreased surface charge of silica under the acidic pH of CO(2)-equilibrated water and elevated salinity is predicted to compress the electric double layer substantially, such that the dispersion contribution to the film thickness is dominant. Relative to silica, smectite surfaces are predicted to support thicker water films under CO(2) confinement because of greater electrostatic and dispersion stabilization.


Asunto(s)
Dióxido de Carbono/química , Simulación por Computador , Membranas Artificiales , Agua/química , Adsorción , Tamaño de la Partícula , Electricidad Estática , Propiedades de Superficie
8.
Environ Sci Technol ; 46(14): 7471-7, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22734621

RESUMEN

Elevated concentrations of U in contaminated environments necessitate understanding controls on its solubility in groundwaters. Here, calculations were performed to compare U(VI) concentrations expected in typical oxidizing groundwaters in equilibrium with different U(VI) minerals. Among common U(VI) minerals, only tyuyamunite (Ca(UO(2))(2)V(2)O(8)·8H(2)O), uranophane (Ca(UO(2))(2)(SiO(3)OH)(2)·5H(2)O), and a putative well-crystallized becquerelite (Ca(UO(2))(6)O(4)(OH)(6)·8H(2)O) were predicted to control U concentrations around its maximum contaminant level (MCL = 0.13 µM), albeit over narrow ranges of pH. Given the limited information available on uranyl vanadates, room temperature Ca-U-V precipitation experiments were conducted in order to compare aqueous U concentrations with tyuyamunite equilibrium predictions. Measured U concentrations were in approximate agreement with predictions based on Langmuir's estimated ΔG(f)°, although the precipitated solids were amorphous and had wide ranges of Ca/U/V molar ratios. Nevertheless, high initial U concentrations were decreased to below the MCL over the pH range 5.5-6.5 in the presence of newly formed CaUV solids, indicating that such solids can be important in controlling U in some environments.


Asunto(s)
Precipitación Química , Compuestos de Uranio/análisis , Vanadatos/química , Contaminantes Químicos del Agua/análisis , Agua/química , Agua Subterránea/química , Concentración de Iones de Hidrógeno , Minerales , Oxidación-Reducción , Solubilidad , Soluciones , Termodinámica , Factores de Tiempo
9.
Environ Sci Technol ; 46(7): 4228-35, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22404561

RESUMEN

Wettability of reservoir minerals and rocks is a critical factor controlling CO(2) mobility, residual trapping, and safe-storage in geologic carbon sequestration, and currently is the factor imparting the greatest uncertainty in predicting capillary behavior in porous media. Very little information on wettability in supercritical CO(2) (scCO(2))-mineral-brine systems is available. We studied pore-scale wettability and wettability alteration in scCO(2)-silica-brine systems using engineered micromodels (transparent pore networks), at 8.5 MPa and 45 °C, over a wide range of NaCl concentrations up to 5.0 M. Dewetting of silica surfaces upon reactions with scCO(2) was observed through water film thinning, water droplet formation, and contact angle increases within single pores. The brine contact angles increased from initial values near 0° up to 80° with larger increases under higher ionic strength conditions. Given the abundance of silica surfaces in reservoirs and caprocks, these results indicate that CO(2) induced dewetting may have important consequences on CO(2) sequestration including reducing capillary entry pressure, and altering quantities of CO(2) residual trapping, relative permeability, and caprock integrity.


Asunto(s)
Dióxido de Carbono/química , Modelos Químicos , Sales (Química)/química , Dióxido de Silicio/química , Aire , Concentración Osmolar , Porosidad , Propiedades de Superficie , Factores de Tiempo , Agua/química
10.
Environ Sci Technol ; 46(3): 1565-71, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22191402

RESUMEN

The mobility of an acidic uranium waste plume in the F-Area of Savannah River Site is of great concern. In order to understand and predict uranium mobility, U(VI) adsorption experiments were performed as a function of pH using background F-Area aquifer sediments and reference goethite and kaolinite (major reactive phases of F-Area sediments), and a component-additivity (CA) based surface complexation model (SCM) was developed. Our experimental results indicate that the fine fractions (≤45 µm) in sediments control U(VI) adsorption due to their large surface area, although the quartz sands show a stronger adsorption ability per unit surface area than the fine fractions at pH < 5.0. Kaolinite is a more important sorbent for U(VI) at pH < 4.0, while goethite plays a major role at pH > 4.0. Our CA model combines an existing U(VI) SCM for goethite and a modified U(VI) SCM for kaolinite along with estimated relative surface area abundances of these component minerals. The modeling approach successfully predicts U(VI) adsorption behavior by the background F-Area sediments. The model suggests that exchange sites on kaolinite dominate U(VI) adsorption at pH < 4.0, goethite and kaolinite edge sites cocontribute to U(VI) adsorption at pH 4.0-6.0, and goethite dominates U(VI) adsorption at pH > 6.0.


Asunto(s)
Sedimentos Geológicos/química , Agua Subterránea/química , Modelos Químicos , Contaminantes Radiactivos/análisis , Uranio/análisis , Adsorción , Georgia , Concentración de Iones de Hidrógeno , Compuestos de Hierro/química , Caolín/química , Minerales/química , Cuarzo/química , Contaminantes Radiactivos/química , Uranio/química
11.
Environ Sci Technol ; 46(8): 4490-7, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22432961

RESUMEN

At the Savannah River Site's F-Area, wastewaters containing radionuclides were disposed into seepage basins for decades. After closure and capping in 1991, the U.S. Department of Energy (DOE) has being monitoring and remediating the groundwater plume. Despite numerous studies of the plume, its persistence for over 20 years has not been well understood. To better understand the plume dynamics, a limited number of deep boreholes were drilled to determine the current plume characteristics. A mixing model was developed to predict plume tritium and nitrate concentrations. We found that the plume trailing edges have emerged for some contaminants, and that contaminant recharge from the basin's vadose zone is still important. The model's estimated time-dependent basin drainage rates combined with dilution from natural recharge successfully predicted plume tritium and nitrate concentrations. This new understanding of source zone influences can help guide science-based remediation, and improve predictions of the natural attenuation timeframes.


Asunto(s)
Sedimentos Geológicos/análisis , Agua Subterránea/análisis , Modelos Teóricos , Residuos Radiactivos , Contaminantes Radiactivos del Agua/análisis , Monitoreo del Ambiente , Nitratos/análisis , South Carolina , Tritio/análisis , Uranio/análisis , Movimientos del Agua
12.
Environ Sci Technol ; 45(6): 2331-7, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21319737

RESUMEN

Acidic uranium (U) groundwater plumes have resulted from acid-extraction of plutonium during the Cold War and from U mining and milling operations. A sustainable method for in situ immobilization of U under acidic conditions is not yet available. Here, we propose to use humic acids (HAs) for in situ U immobilization in acidic waste plumes. Our laboratory batch experiments show that HA can adsorb onto aquifer sediments rapidly, strongly and practically irreversibly. Adding HA greatly enhanced U adsorption capacity to sediments at pH below 5.0. Our column experiments using historically contaminated sediments from the Savannah River Site under slow flow rates (120 and 12 m/year) show that desorption of U and HA were nondetectable over 100 pore-volumes of leaching with simulated acidic groundwaters. Upon HA-treatment, 99% of the contaminant [U] was immobilized at pH ≤ 4.5, compared to 5% and 58% immobilized in the control columns at pH 3.5 and 4.5, respectively. These results indicate that HA-treatment is a promising in situ remediation method for acidic U waste plumes. As a remediation reagent, HAs are resistant to biodegradation, cost-effective, nontoxic, and easily introducible to the subsurface.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Sustancias Húmicas , Uranio/química , Contaminantes Radiactivos del Agua/química , Adsorción , Agua Dulce/química , Concentración de Iones de Hidrógeno , Cinética , Minería
14.
Sci Rep ; 9(1): 17198, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748585

RESUMEN

Although bedrock weathering strongly influences water quality and global carbon and nitrogen budgets, the weathering depths and rates within subsurface are not well understood nor predictable. Determination of both porewater chemistry and subsurface water flow are needed in order to develop more complete understanding and obtain weathering rates. In a long-term field study, we applied a multiphase approach along a mountainous watershed hillslope transect underlain by marine shale. Here we report three findings. First, the deepest extent of the water table determines the weathering front, and the range of annually water table oscillations determines the thickness of the weathering zone. Below the lowest water table, permanently water-saturated bedrock remains reducing, preventing deeper pyrite oxidation. Secondly, carbonate minerals and potentially rock organic matter share the same weathering front depth with pyrite, contrary to models where weathering fronts are stratified. Thirdly, the measurements-based weathering rates from subsurface shale are high, amounting to base cation exports of about 70 kmolc ha-1 y-1, yet consistent with weathering of marine shale. Finally, by integrating geochemical and hydrological data we present a new conceptual model that can be applied in other settings to predict weathering and water quality responses to climate change.

15.
Ecol Evol ; 9(12): 6869-6900, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31380022

RESUMEN

Watersheds are important suppliers of freshwater for human societies. Within mountainous watersheds, microbial communities impact water chemistry and element fluxes as water from precipitation events discharge through soils and underlying weathered rock, yet there is limited information regarding the structure and function of these communities. Within the East River, CO watershed, we conducted a depth-resolved, hillslope to riparian zone transect study to identify factors that control how microorganisms are distributed and their functions. Metagenomic and geochemical analyses indicate that distance from the East River and proximity to groundwater and underlying weathered shale strongly impact microbial community structure and metabolic potential. Riparian zone microbial communities are compositionally distinct, from the phylum down to the species level, from all hillslope communities. Bacteria from phyla lacking isolated representatives consistently increase in abundance with increasing depth, but only in the riparian zone saturated sediments we found Candidate Phyla Radiation bacteria. Riparian zone microbial communities are functionally differentiated from hillslope communities based on their capacities for carbon and nitrogen fixation and sulfate reduction. Selenium reduction is prominent at depth in weathered shale and saturated riparian zone sediments and could impact water quality. We anticipate that the drivers of community composition and metabolic potential identified throughout the studied transect will predict patterns across the larger watershed hillslope system.

16.
Environ Toxicol Chem ; 37(5): 1301-1308, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29369412

RESUMEN

It is commonly true that a diluted colloidal suspension is more stable over time than a concentrated one because dilution reduces collision rates of the particles and therefore delays the formation of aggregates. However, this generalization does not apply for some engineered ligand-coated nanoparticles (NPs). We observed the opposite relationship between stability and concentration of NPs. We tested 4 different types of NPs: CdSe-11-mercaptoundecanoic acid, CdTe-polyelectrolytes, Ag-citrate, and Ag-polyvinylpyrrolidone. The results showed that dilution alone induced aggregation and subsequent sedimentation of the NPs that were originally monodispersed at very high concentrations. Increased dilution caused NPs to progressively become unstable in the suspensions. The extent of the dilution impact on the stability of NPs is different for different types of NPs. We hypothesize that the unavoidable decrease in free ligand concentration in the aqueous phase following dilution causes detachment of ligands from the suspended NP cores. The ligands attached to NP core surfaces must generally approach exchange equilibrium with free ligands in the aqueous phase; therefore, ligand detachment and destabilization are expected consequences of dilution. More studies are necessary to test this hypothesis. Because the stability of NPs determines their physicochemical and kinetic behavior including toxicity, dilution-induced instability needs to be understood to realistically predict the behavior of engineered ligand-coated NPs in aqueous systems. Environ Toxicol Chem 2018;37:1301-1308. © 2018 SETAC.


Asunto(s)
Nanopartículas del Metal/química , Nanotecnología/métodos , Compuestos de Cadmio/química , Dispersión Dinámica de Luz , Ácidos Grasos/química , Filtración , Hidrodinámica , Ligandos , Puntos Cuánticos/química , Plata/química , Compuestos de Sulfhidrilo/química , Suspensiones , Telurio/química , Factores de Tiempo
17.
Sci Total Environ ; 637-638: 672-685, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29758424

RESUMEN

Recharge of alluvial aquifers is a key component in understanding the interaction between floodplain vadose zone biogeochemistry and groundwater quality. The Rifle Site (a former U-mill tailings site) adjacent to the Colorado River is a well-established field laboratory that has been used for over a decade for the study of biogeochemical processes in the vadose zone and aquifer. This site is considered an exemplar of both a riparian floodplain in a semiarid region and a post-remediation U-tailings site. In this paper we present Sr isotopic data for groundwater and vadose zone porewater samples collected in May and July 2013 to build a mixing model for the fractional contribution of vadose zone porewater (i.e. recharge) to the aquifer and its variation across the site. The vadose zone porewater contribution to the aquifer ranged systematically from 0% to 38% and appears to be controlled largely by the microtopography of the site. The area-weighted average contribution across the site was 8% corresponding to a net recharge of 7.5 cm. Given a groundwater transport time across the site of ~1.5 to 3 years, this translates to a recharge rate between 5 and 2.5 cm/yr, and with the average precipitation to the site implies a loss from the vadose zone due to evapotranspiration of 83% to 92%, both ranges are in good agreement with previously published results by independent methods. A uranium isotopic (234U/238U activity ratios) mixing model for groundwater and surface water samples indicates that a ditch across the site is hydraulically connected to the aquifer and locally significantly affects groundwater. Groundwater samples with high U concentrations attributed to natural bio-reduced zones have 234U/238U activity ratios near 1, suggesting that the U currently being released to the aquifer originated from the former U-mill tailings.

18.
J Colloid Interface Sci ; 247(1): 54-61, 2002 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16290440

RESUMEN

Colloid sorption onto air-water interfaces in a variety of natural environments has been previously recognized, but better quantification and understanding is still needed. Affinities of clay colloids for the air-water interface were measured using a bubble-column method and reported as partition coefficients (K). Four types of dilute clay suspensions were measured in NaCl solutions under varying pH and ionic strength conditions: kaolinite KGa-1, illite IMt-2, montmorillonite SWy-2, and bentonite. The K values of three types of polystyrene latex particles with different surface-charge properties were also measured for comparison. Kaolinite exhibited extremely high affinity to the air-water interface at pH values below 7. Illite has lower affinity to air-water interfaces than kaolinite, but has similar pH dependence. Na-montmorillonite and bentonite clay were found excluded from the air-water interface at any given pH and ionic strength. Positively and negatively charged latex particles exhibited sorption and exclusion, respectively, at the air-water interface. These results show the importance of electrostatic interactions between the air-water interface and colloids, especially the influence of pH-dependent edge charges, and influence of particle shape.

19.
J Environ Qual ; 32(2): 541-9, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12708678

RESUMEN

Biogeochemical transformations of redox-sensitive chemicals in soils can be strongly transport-controlled and localized. This was tested through experiments on chromium diffusion and reduction in soil aggregates that were exposed to chromate solutions. Reduction of soluble Cr(VI) to insoluble Cr(II) occurred only within the surface layer of aggregates with higher available organic carbon and higher microbial respiration. Sharply terminated Cr diffusion fronts develop when the reduction rate increases rapidly with depth. The final state of such aggregates consists of a Cr-contaminated exterior, and an uncontaminated core, each having different microbial community compositions and activity. Microbial activity was significantly higher in the more reducing soils, while total microbial biomass was similar in all of the soils. The small fraction of Cr(VI) remaining unreduced resides along external surfaces of aggregates, leaving it potentially available to future transport down the soil profile. Using the Thiele modulus, Cr(VI) reduction in soil aggregates is shown to be diffusion rate- and reaction rate-limited in anaerobic and aerobic aggregates, respectively. Thus, spatially resolved chemical and microbiological measurements are necessary within anaerobic soil aggregates to characterize and predict the fate of Cr contamination. Typical methods of soil sampling and analyses that average over redox gradients within aggregates can erase important biogeochemical spatial relations necessary for understanding these environments.


Asunto(s)
Carcinógenos Ambientales/metabolismo , Cromo/metabolismo , Microbiología del Suelo , Bacterias Aerobias/fisiología , Bacterias Anaerobias/fisiología , Carcinógenos Ambientales/química , Cromo/química , Difusión , Monitoreo del Ambiente , Oxidación-Reducción
20.
J Environ Qual ; 32(5): 1641-9, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14535304

RESUMEN

Chromium has become an important soil contaminant at many sites, and facilitating in situ reduction of toxic Cr(VI) to nontoxic Cr(III) is becoming an attractive remediation strategy. Acceleration of Cr(VI) reduction in soils by addition of organic carbon was tested in columns pretreated with solutions containing 1000 and 10 000 mg L(-1) Cr(VI) to evaluate potential in situ remediation of highly contaminated soils. Solutions containing 0,800, or 4000 mg L(-1) organic carbon in the form of tryptic soy broth or lactate were diffused into the Cr(VI)-contaminated soils. Changes in Cr oxidation state were monitored through periodic micro-XANES analyses of soil columns. Effective first-order reduction rate constants ranged from 1.4 x 10(-8) to 1.5 x 10(-7) s(-1), with higher values obtained for lower levels of initial Cr(VI) and higher levels of organic carbon. Comparisons with sterile soils showed that microbially dependent processes were largely responsible for Cr(VI) reduction, except in the soils initially exposed to 10 000 mg L(-1) Cr(VI) solutions that receive little (800 mg L(-1)) or no organic carbon. However, the microbial populations (< or = 2.1 x 10(5) g(-1)) in the viable soils are probably too low for direct enzymatic Cr(VI) reduction to be important. Thus, synergistic effects sustained in whole soil systems may have accounted for most of the observed reduction. These results show that acceleration of in situ Cr(VI) reduction with addition of organic carbon is possible in even heavily contaminated soils and suggest that microbially dependent reduction pathways can be dominant.


Asunto(s)
Carbono/metabolismo , Carcinógenos Ambientales/metabolismo , Cromo/metabolismo , Contaminantes del Suelo/metabolismo , Bacterias/enzimología , Biodegradación Ambiental , Oxidación-Reducción , Dinámica Poblacional , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA