Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Microb Cell Fact ; 23(1): 101, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38566056

RESUMEN

BACKGROUND: Short-chain fatty acids (SCFAs) are cost-effective carbon sources for an affordable production of lipids. Hexanoic acid, the acid with the longest carbon chain in the SCFAs pool, is produced in anaerobic fermentation of organic residues and its use is very challenging, even inhibiting oleaginous yeasts growth. RESULTS: In this investigation, an adaptive laboratory evolution (ALE) was performed to improve Yarrowia lipolytica ACA DC 50109 tolerance to high hexanoic acid concentrations. Following ALE, the transcriptomic analysis revealed several genetic adaptations that improved the assimilation of this carbon source in the evolved strain compared to the wild type (WT). Indeed, the evolved strain presented a high expression of the up-regulated gene YALI0 E16016g, which codes for FAT1 and is related to lipid droplets formation and responsible for mobilizing long-chain acids within the cell. Strikingly, acetic acid and other carbohydrate transporters were over-expressed in the WT strain. CONCLUSIONS: A more tolerant yeast strain able to attain higher lipid content under the presence of high concentrations of hexanoic acid has been obtained. Results provided novel information regarding the assimilation of hexanoic acid in yeasts.


Asunto(s)
Yarrowia , Fermentación , Yarrowia/metabolismo , Caproatos/metabolismo , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos/metabolismo , Ácidos/metabolismo , Perfilación de la Expresión Génica , Carbono/metabolismo
2.
Environ Res ; 206: 112288, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34717941

RESUMEN

To properly exploit short-chain fatty acids (SCFAs) in the chemical industry, it is of foremost importance to ensure stable SCFA profile production via anaerobic fermentation (AF). The different macromolecular distribution of food wastes (FWs) used as feedstock might be crucial for process outcome. Targeting at a specific SCFAs profile and yield, this study explored the statistical correlation between the macromolecular composition of FWs and the produced SCFAs in batch-AFs at 25 °C and 55 °C. Principal Component Analysis (PCA) revealed that the carbohydrates fraction was directly related with butyric acid accumulation, regardless of process temperature. Nevertheless, operational temperature resulted in a pH change, which ultimately affected the process fate. PCA of 25 °C-batch-AF showed a positive correlation between high carbohydrate content and longer-chain acids accumulation. By contrast, 55 °C-AF resulted in higher product specificity than at 25 °C, mainly due to butyrate-type fermentation of carbohydrates. Batch results were further validated in a semicontinuous reactor. Prevailing SCFAs and high bioconversion efficiencies relied on 3 main FWs characteristics: high carbohydrate content (>77% w/w), high carbohydrate/protein ratio (≥10) and high soluble organic matter content. Results obtained herein allowed predicting a specific SCFAs profile based on FWs composition, which is relevant for setting proper downstream technologies.


Asunto(s)
Ácidos Grasos Volátiles , Aguas del Alcantarillado , Anaerobiosis , Fermentación , Concentración de Iones de Hidrógeno , Aguas del Alcantarillado/química , Temperatura
3.
FEMS Yeast Res ; 21(6)2021 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-34453534

RESUMEN

In recent years, there has been a growing interest in the use of renewable sources for bio-based production aiming at developing sustainable and feasible approaches towards a circular economy. Among these renewable sources, organic wastes (OWs) can be anaerobically digested to generate carboxylates like volatile fatty acids (VFAs), lactic acid, and longer-chain fatty acids that are regarded as novel building blocks for the synthesis of value-added compounds by yeasts. This review discusses on the processes that can be used to create valuable molecules from OW-derived VFAs; the pathways employed by the oleaginous yeast Yarrowia lipolytica to directly metabolize such molecules; and the relationship between OW composition, anaerobic digestion, and VFA profiles. The review also summarizes the current knowledge about VFA toxicity, the pathways by which VFAs are metabolized and the metabolic engineering strategies that can be employed in Y. lipolytica to produce value-added biobased compounds from VFAs.


Asunto(s)
Yarrowia , Ácidos Carboxílicos , Ácidos Grasos , Ácidos Grasos Volátiles , Ingeniería Metabólica , Yarrowia/genética
4.
Biotechnol Bioeng ; 117(1): 238-250, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31544974

RESUMEN

Microbial oils are proposed as a suitable alternative to petroleum-based chemistry in terms of environmental preservation. These oils have traditionally been studied using sugar-based feedstock, which implies high costs, substrate limitation, and high contamination risks. In this sense, low-cost carbon sources such as volatile fatty acids (VFAs) are envisaged as promising building blocks for lipid biosynthesis to produce oil-based bioproducts. VFAs can be generated from a wide variety of organic wastes through anaerobic digestion and further converted into lipids by oleaginous yeasts (OYs) in a fermentation process. These microorganisms can accumulate in the form of lipid bodies, lipids of up to 60% wt/wt of their biomass. In this context, OY is a promising biotechnological tool for biofuel and bioproduct generation using low-cost VFA media as substrates. This review covers recent advances in microbial oil production from VFAs. Production of VFAs via anaerobic digestion processes and the involved metabolic pathways are reviewed. The main challenges as well as recent approaches for lipid overproduction are also discussed.


Asunto(s)
Ácidos Grasos Volátiles , Fermentación , Aceites , Levaduras , Biocombustibles , Reactores Biológicos , Ácidos Grasos Volátiles/química , Ácidos Grasos Volátiles/metabolismo , Ingeniería Metabólica , Redes y Vías Metabólicas , Aceites/química , Aceites/metabolismo , Levaduras/genética , Levaduras/metabolismo
5.
Molecules ; 24(24)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842312

RESUMEN

Disturbances in anaerobic digestion (AD) negatively impact the overall reactor performance. These adverse effects have been widely investigated for methane generation. However, AD recently appeared as a potential technology to obtain volatile fatty acids (VFAs) and thus, the impact of process disturbances must be evaluated. In this sense, microbial response towards a starvation period of two weeks was investigated resulting in a conversion of organic matter into VFAs of 0.39 ± 0.03 COD-VFAs/CODin. However, the lack of feeding reduced the yield to 0.30 ± 0.02 COD-VFAs/CODin. Microbial analysis revealed that the starvation period favored the syntrophic acetate-oxidizing bacteria coupled with hydrogenotrophic methanogens. Finally, the system was fed at 9 g COD/Ld resulting in process recovery (0.39 ± 0.04 COD-VFAs/CODin). The different microbiome obtained at the end of the process was proved to be functionally redundant, highlighting the AD robustness for VFAs production.


Asunto(s)
Bacterias/crecimiento & desarrollo , Reactores Biológicos , Ácidos Grasos Volátiles/metabolismo , Microalgas/crecimiento & desarrollo , Anaerobiosis
6.
Bioprocess Biosyst Eng ; 39(5): 703-12, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26837504

RESUMEN

Anaerobic digestion of microalgae is hampered by its complex cell wall. Against this background, cyanobacteria cell walls render this biomass as an ideal substrate for overcoming this drawback. The aim of the present study was to compare the growth of two cyanobacteria (Aphanizomenon ovalisporum and Anabaena planctonica) and a microalga (Chlorella vulgaris) in urban wastewater when varying the temperature (22, 27 and 32 °C). Cyanobacterial optimal growth for both strains was attained at 22 °C, while C. vulgaris did not show remarkable differences among temperatures. For all the microorganisms, ammonium removal was higher than phosphate. Biomass collected was subjected to anaerobic digestion. Methane yield of C. vulgaris was 184.8 mL CH4 g COD in(-1) while with A. ovalisporum and A. planctonica the methane production was 1.2- and 1.4-fold higher. This study showed that cyanobacteria growth rates could be comparable to microalgae while presenting the additional benefit of an increased anaerobic digestibility.


Asunto(s)
Biomasa , Chlorella vulgaris/metabolismo , Cianobacterias/metabolismo , Metano/metabolismo , Aguas Residuales/microbiología , Anaerobiosis , Chlorella vulgaris/crecimiento & desarrollo , Cianobacterias/crecimiento & desarrollo
7.
Crit Rev Biotechnol ; 35(3): 342-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24506661

RESUMEN

Future biorefineries will integrate biomass conversion processes to produce fuels, power, heat and value-added chemicals. Due to its low price and wide distribution, lignocellulosic biomass is expected to play an important role toward this goal. Regarding renewable biofuel production, bioethanol from lignocellulosic feedstocks is considered the most feasible option for fossil fuels replacement since these raw materials do not compete with food or feed crops. In the overall process, lignin, the natural barrier of the lignocellulosic biomass, represents an important limiting factor in biomass digestibility. In order to reduce the recalcitrant structure of lignocellulose, biological pretreatments have been promoted as sustainable and environmentally friendly alternatives to traditional physico-chemical technologies, which are expensive and pollute the environment. These approaches include the use of diverse white-rot fungi and/or ligninolytic enzymes, which disrupt lignin polymers and facilitate the bioconversion of the sugar fraction into ethanol. As there is still no suitable biological pretreatment technology ready to scale up in an industrial context, white-rot fungi and/or ligninolytic enzymes have also been proposed to overcome, in a separated or in situ biodetoxification step, the effect of the inhibitors produced by non-biological pretreatments. The present work reviews the latest studies regarding the application of different microorganisms or enzymes as useful and environmentally friendly delignification and detoxification technologies for lignocellulosic biofuel production. This review also points out the main challenges and possible ways to make these technologies a reality for the bioethanol industry.


Asunto(s)
Biocombustibles , Biomasa , Biotecnología/métodos , Etanol , Lignina , Lignina/química , Lignina/metabolismo
8.
Biotechnol Bioeng ; 112(10): 1955-66, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25976593

RESUMEN

When employing biotechnological processes for the procurement of biofuels and bio-products from microalgae, one of the most critical steps affecting economy and yields is the "cell disruption" stage. Currently, enzymatic cell disruption has delivered effective and cost competitive results when compared to mechanical and chemical cell disruption methods. However, the introduction of enzymes implies additional associated cost within the overall process. In order to reduce this cost, autolysis of microalgae is proposed as alternative enzymatic cell disruption method. This review aims to provide the state of the art of enzymatic cell disruption treatments employed in biorefinery processes and highlights the use of endopeptidases. During the enzymatic processes of microalgae life cycle, some lytic enzymes involved in cell division and programmed cell death have been proven useful in performing cell lysis. In this context, the role of endopeptidases is emphasized. Mirroring these natural events, an alternative cell disruption approach is proposed and described with the potential to induce the autolysis process using intrinsic cell enzymes. Integrating induced autolysis within biofuel production processes offers a promising approach to reduce overall global costs and energetic input associated with those of current cell disruption methods. A number of options for further inquiry are also discussed.


Asunto(s)
Productos Biológicos/aislamiento & purificación , Biotecnología/métodos , Enzimas/metabolismo , Microalgas/efectos de los fármacos , Productos Biológicos/metabolismo , Hidrólisis
9.
Sci Rep ; 14(1): 14233, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902520

RESUMEN

Converting waste into high-value products promotes sustainability by reducing waste and creating new revenue streams. This study investigates the potential of diverse yeasts for microbial oil production by utilizing short-chain fatty acids (SCFAs) that can be produced from organic waste and focuses on identifying strains with the best SCFA utilisation, tolerance and lipid production. A collection of 1434 yeast strains was cultivated with SCFAs as the sole carbon source. Eleven strains emerged as candidates with promising growth rates and high lipid accumulation. Subsequent fermentation experiments in liquid SCFA-rich media, which focused on optimizing lipid accumulation by adjusting the carbon to nitrogen (C/N) ratio, showed an increase in lipid content at a C/N ratio of 200:1, but with a concurrent reduction in biomass. Two strains were characterized by their superior ability to produce lipids compared to the reference strain Yarrowia lipolytica CECT124: Y. lipolytica EXF-17398 and Pichia manshurica EXF-7849. Characterization of these two strains indicated that they exhibit a biotechnologically relevant balance between maximizing lipid yield and maintaining growth at high SCFA concentrations. These results emphasize the potential of using SCFAs as a sustainable feedstock for oleochemical production, offering a dual benefit of waste valorisation and microbial oil production.


Asunto(s)
Ácidos Grasos Volátiles , Fermentación , Ácidos Grasos Volátiles/metabolismo , Levaduras/metabolismo , Levaduras/crecimiento & desarrollo , Yarrowia/metabolismo , Yarrowia/crecimiento & desarrollo , Ensayos Analíticos de Alto Rendimiento/métodos , Biomasa , Biocombustibles/microbiología , Ácidos Carboxílicos/metabolismo , Pichia/metabolismo , Pichia/crecimiento & desarrollo
10.
Microb Biotechnol ; 16(2): 372-380, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36537050

RESUMEN

Microbial lipids for chemical synthesis are commonly obtained from sugar-based substrates which in most cases is not economically viable. As a low-cost carbon source, short-chain fatty acids (SCFAs) that can be obtained from food wastes offer an interesting alternative for achieving an affordable lipid production process. In this study, SCFAs were employed to accumulate lipids using Yarrowia lipolytica ACA DC 50109. For this purpose, different amounts of SCFAs, sulfate, phosphate and carbon: phosphate ratios were used in both synthetic and real SCFAs-rich media. Although sulfate limitation did not increase lipid accumulation, phosphate limitation was proved to be an optimal strategy for increasing lipid content and lipid yields in both synthetic and real media, reaching a lipid productivity up to 8.95 g/L h. Remarkably, the highest lipid yield (0.30 g/g) was achieved under phosphate absence condition (0 g/L). This fact demonstrated the suitability of using low-phosphate concentrations to boost lipid production from SCFAs.


Asunto(s)
Fosfatos , Yarrowia , Ácidos Grasos Volátiles , Glucosa , Carbono , Ácidos Grasos
11.
Bioengineered ; 14(1): 2286723, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38010763

RESUMEN

Cutaneotrichosporon curvatum and Yarrowia lipolytica can accumulate microbial oils using short-chain fatty acids (SCFA) as carbon sources. SCFAs-rich media often contain significant amounts of nitrogen that prevent high carbon:nitrogen (C:N) ratios necessary to boost lipid production. This work assessed the intrinsic ability of C. curvatum and Y. lipolytica to produce high amounts of microbial oils from these unusual carbon sources. Results demonstrated that minor differences in SCFA concentration (only 2 g/L) had a significant effect on yeast growth and lipid production. A C:N of 80 promoted yeast growth at all SCFA concentrations and favored SCFA consumption at 19 g/L SCFAs. The different SCFA uptake preferences in C. curvatum and Y. lipolytica highlighted the importance of considering the SCFA profile to select a suitable yeast strain for microbial oils production. At the most challenging SCFA concentration (19 g/L), 57.2% ±1.6% (w/w) and 78.4 ± 0.6% (w/w) lipid content were obtained in C. curvatum and Y. lipolytica, respectively. These values are among the highest reported for wild-type strains. To circumvent the challenges associated with media with high nitrogen content, this report also proved struvite precipitation as an effective method for increasing lipid production (from 17.9 ± 3.9% (w/w) to 41.9 ± 2.6% (w/w)) after nitrogen removal in food waste-derived media.


Slight variations in SCFA concentrations have a relevant effect on yeast lipid productionHigh nitrogen availability is crucial to promote cell growth at very high SCFA concentrationsC:N effect on cell growth and lipid production is specie-specific and may depend on yeast robustnessYeast strains have diverse SCFA preferences and differently metabolize these acidsStruvite precipitation effectively removes nitrogen from real digestates increasing C:N.


Asunto(s)
Eliminación de Residuos , Yarrowia , Alimentos , Aceites , Ácidos Grasos Volátiles , Ácidos Carboxílicos , Carbono , Nitrógeno
12.
Bioresour Technol ; 386: 129499, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37460020

RESUMEN

Global reliance on fossil oil should shift to cleaner alternatives to get a decarbonized society. One option to achieve this ambitious goal is the use of biochemicals produced from lignocellulosic biomass (LCB). The inherent low biodegradability of LCB and the inhibitory compounds that might be released during pretreatment are two main challenges for LCB valorization. At microbiological level, constraints are mostly linked to the need for axenic cultures and the preference for certain carbon sources (i.e., glucose). To cope with these issues, this review focuses on efficient LCB conversion via the sugar platform as well as an innovative carboxylate platform taking advantage of the co-cultivation of microorganisms. This review discusses novel trends in the use of microbial communities and co-cultures aiming at different bioproducts co-generation in single reactors as well as in sequential bioprocess combination. The outlook and further perspectives of these alternatives have been outlined for future successful development.


Asunto(s)
Lignina , Azúcares , Biomasa , Técnicas de Cocultivo , Lignina/química , Biocombustibles
13.
Biotechnol Biofuels Bioprod ; 16(1): 96, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270640

RESUMEN

Carboxylic acids have become interesting platform molecules in the last years due to their versatility to act as carbon sources for different microorganisms or as precursors for the chemical industry. Among carboxylic acids, short-chain fatty acids (SCFAs) such as acetic, propionic, butyric, valeric, and caproic acids can be biotechnologically produced in an anaerobic fermentation process from lignocellulose or other organic wastes of agricultural, industrial, or municipal origin. The biosynthesis of SCFAs is advantageous compared to chemical synthesis, since the latter relies on fossil-derived raw materials, expensive and toxic catalysts and harsh process conditions. This review article gives an overview on biosynthesis of SCFAs from complex waste products. Different applications of SCFAs are explored and how these acids can be considered as a source of bioproducts, aiming at the development of a circular economy. The use of SCFAs as platform molecules requires adequate concentration and separation processes that are also addressed in this review. Various microorganisms such as bacteria or oleaginous yeasts can efficiently use SCFA mixtures derived from anaerobic fermentation, an attribute that can be exploited in microbial electrolytic cells or to produce biopolymers such as microbial oils or polyhydroxyalkanoates. Promising technologies for the microbial conversion of SCFAs into bioproducts are outlined with recent examples, highlighting SCFAs as interesting platform molecules for the development of future bioeconomy.

14.
Sci Rep ; 12(1): 557, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017613

RESUMEN

Increasing yeast robustness against lignocellulosic-derived inhibitors and insoluble solids in bioethanol production is essential for the transition to a bio-based economy. This work evaluates the effect exerted by insoluble solids on yeast tolerance to inhibitory compounds, which is crucial in high gravity processes. Adaptive laboratory evolution (ALE) was applied on a xylose-fermenting Saccharomyces cerevisiae strain to simultaneously increase the tolerance to lignocellulosic inhibitors and insoluble solids. The evolved strain gave rise to a fivefold increase in bioethanol yield in fermentation experiments with high concentration of inhibitors and 10% (w/v) of water insoluble solids. This strain also produced 5% (P > 0.01) more ethanol than the parental in simultaneous saccharification and fermentation of steam-exploded wheat straw, mainly due to an increased xylose consumption. In response to the stress conditions (solids and inhibitors) imposed in ALE, cells induced the expression of genes related to cell wall integrity (SRL1, CWP2, WSC2 and WSC4) and general stress response (e.g., CDC5, DUN1, CTT1, GRE1), simultaneously repressing genes related to protein synthesis and iron transport and homeostasis (e.g., FTR1, ARN1, FRE1), ultimately leading to the improved phenotype. These results contribute towards understanding molecular mechanisms that cells might use to convert lignocellulosic substrates effectively.


Asunto(s)
Lignina
15.
Biotechnol Biofuels Bioprod ; 15(1): 37, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35440008

RESUMEN

BACKGROUND: Microbial lipids are found to be an interesting green alternative to expand available oil sources for the chemical industry. Yeasts are considered a promising platform for sustainable lipid production. Remarkably, some oleaginous yeasts have even shown the ability to grow and accumulate lipids using unusual carbon sources derived from organic wastes, such as volatile fatty acids. Recent research efforts have been focused on developing rapid and accurate fluorometric methods for the quantification of intracellular yeast lipids. Nevertheless, the current methods are often tedious and/or exhibit low reproducibility. RESULTS: This work evaluated the reliability of different fluorescence measurements (fluorescence intensity, total area and fluorescence quantum yield) using Nile Red as lipid dye in two yeast strains (Yarrowia lipolytica ACA-DC 50109 and Cutaneotrichosporon curvatum NRRL-Y-1511). Different standard curves were obtained for each yeast specie. Fermentation tests were carried with 6-month difference to evaluate the effect of the fluorometer lamp lifetime on lipid quantification. CONCLUSIONS: Fluorescence quantum yield presented the most consistent measurements along time and the closer estimations when compared with lipids obtained by conventional methods (extraction and gravimetrical determination). The need of using fluorescence quantum yield to estimate intracellular lipids, which is not the common trend in studies focused on microbial lipid production, was stressed. The information here provided will surely enable more accurate results comparison.

16.
Waste Manag ; 139: 321-329, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34999439

RESUMEN

Dry anaerobic digestion (D-AD) generates nitrogen-rich effluents that are normally neglected in the circular bioeconomy. The high turbidity and ammonium content hamper nitrogen recovery from these effluents via biological processes, such as microalgae culture. The goal of this study was to demonstrate microalgae growth viability in high-strength D-AD effluents in order to recover nitrogen (N) as microalgae biomass. According to the experimental factorial design conducted in batch reactors, ammonium was identified as the critical inhibitory compound for microalgae growth while turbidity did not exhibit a significantly negative effect. Instead, turbidity resulted advantageous since it promoted high nitrogen uptake rates and biomass production. The presence of organic turbidity resulted in a positive effect that boosted Chlorella growth in a stream with higher ammonium (350 mg NH4+-N L-1) and turbidity (175 NTU) than the inhibition thresholds reported in the literature, reaching 98.7% of N recovery as microalgae biomass. When microalgae culture was scaled up in a photobioreactor operated in continuous mode, microalgae biomass was effectively produced while recovering 100% of N at a hydraulic retention time of 10 days. By imposing long exposure times and high turbidity, Chlorella adaptation to high-strength D-AD effluent resulted in high N uptake and biomass production. This study demonstrated not only the most influencing factor and the optimal NH4+-N and turbidity combination, but also the viability of using D-AD effluents as culture media for microalgae biomass production.


Asunto(s)
Chlorella , Microalgas , Anaerobiosis , Biomasa , Nitrógeno , Aguas Residuales
17.
Bioresour Technol ; 344(Pt B): 126282, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34752887

RESUMEN

Carboxylic acids, traditionally produced from fossil fuels, might be generated from renewable biomass resources via anaerobic fermentation. Considering that the microbial activity of this bioprocess is ruled by the imposed hydraulic retention time (HRT), this investigation explored the relationship between process stability and microbial community. Stepwise and direct HRT reduction strategies were assessed in terms of waste bioconversion into volatile fatty acids (VFAs). Microbial community dynamics revealed a microbial specialization along the HRT decrease. The direct implementation of low HRT resulted in drastic microbial fluctuations, leading to process failure at HRT below 6 days. Stepwise strategy for HRT reduction favored microbial adaptation, supporting maximum bioconversions efficiencies (32 % VFACOD/tCODin) at low HRT values (HRT 4 days). Microbial similarity analysis revealed Clostridiales, Lactobacillales and Bacteroidales orders as keystone microorganisms involved in VFAs production, being responsible for protein degradation and propionic acid accumulation.


Asunto(s)
Reactores Biológicos , Microbiota , Anaerobiosis , Ácidos Carboxílicos , Ácidos Grasos Volátiles , Fermentación
18.
Bioresour Technol ; 337: 125387, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34134053

RESUMEN

Unspecific microorganisms consortia are normally used in anaerobic biodegradation of solid wastes. However, these consortia can be tuned to optimally obtain determined bioproducts. In this study, high value-added products and biogas were obtained via an innovative two-stage anaerobic bioprocess from microalgae biomass. The anaerobic fermentation (AF) entailed the production of short-chain fatty acids (SCFAs) and subsequently, only the solid spent of AF effluent was valorized for methane production via conventional anaerobic digestion (AD). Applied conditions in AF (25 °C, HRT 8 days) favored Firmicutes predominance (64%) enabling a conversion efficiency of 32.1% g SCFAs-COD/g CODin. Opposite, a wider microbial biodiversity was determined in the AD reactor (35 °C, HRT 20 days), being mainly composed by Firmicutes (28.6%), Euryarchaeota (17.7%) and Proteobacteria (15.3%). AD of the AF-solid spent reached 168.9 mL CH4 /g CODin. Strikingly, operational conditions imposed mediated a microbial specialization that maximized product output.


Asunto(s)
Microalgas , Microbiota , Anaerobiosis , Biocombustibles , Biomasa , Reactores Biológicos , Metano
19.
Chemosphere ; 263: 127942, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32835976

RESUMEN

Short-chain fatty acids (SCFAs) are considered building blocks for bioproducts in the so-called carboxylate platform. These compounds can be sustainably produced via anaerobic fermentation (AF) of organic substrates, such as microalgae. However, SCFAs bioconversion efficiency is hampered by the hard cell wall of some microalgae. In this study, one thermal and two enzymatic pretreatments (carbohydrases and proteases) were employed to enhance Chlorella vulgaris biomass solubilization prior to AF. Pretreated and non-pretreated microalgae were assessed in continuous stirred tank reactors (CSTRs) for SCFAs production. Aiming to understand microorganisms' roles in AF depending on the employed substrate, not only bioconversion yields into SCFAs were evaluated but microbial communities were thoroughly characterized. Proteins were responsible for the inherent limitation of raw biomass conversion into SCFAs. Indeed, the proteolytic pretreatment resulted in the highest bioconversion (33.4% SCFAs-COD/CODin), displaying a 4-fold enhancement compared with raw biomass. Population dynamics revealed a microbial biodiversity loss along the AF regardless of the applied pretreatment, evidencing that the imposed operational conditions specialized the microbial community. In fact, a reduced abundance in Euryarchaeota phylum explained the low methanogenic activity, implying SCFAs accumulation. The bacterial community developed in the reactors fed with pretreated microalgae exhibited high acidogenic activities, being dominated by Firmicutes and Bacteroidetes. Firmicutes was by far the dominant phylum when using protease (65% relative abundance) while Bacteroidetes was prevailing in the reactor fed with carbohydrase-pretreated microalgae biomass (40% relative abundance). This fact indicated that the applied pretreatment and macromolecule solubilization have a strong effect on microbial distribution and therefore in SCFAs bioconversion yields.


Asunto(s)
Microalgas/fisiología , Anaerobiosis , Bacterias/metabolismo , Bacteroidetes , Biodiversidad , Biomasa , Metabolismo de los Hidratos de Carbono , Chlorella vulgaris , Ácidos Grasos Volátiles/metabolismo , Fermentación/fisiología , Firmicutes , Microalgas/metabolismo , Microbiota
20.
Bioresour Technol ; 321: 124528, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33333483

RESUMEN

Volatile fatty acids (VFAs) are platform molecules with numerous applications. They can be obtained by adjusting the operational conditions of anaerobic digestion to avoid methanogenesis while focusing on fermentative stages. There are gaps in the knowledge of how, from a life-cycle perspective, the fermentative process performs in VFAs production from waste, including environmental consequences of substituting common commodities in the current market. Mass and energy balances of VFAs production from protein-rich microalgal and carbohydrate-rich agro-industrial wastes were used herein as a key source of inventory data for life cycle assessment. Two waste treatment options were considered: (i) VFAs production (anaerobic fermentation) plus anaerobic digestion of the resulting waste after VFAs separation, and (ii) anaerobic digestion of the original waste for bioenergy. Several scenarios were formulated to evaluate their life-cycle performance. VFAs production generally shows a better environmental behaviour than conventional anaerobic digestion, principally due to the substitution of conventional chemicals.


Asunto(s)
Carbohidratos , Ácidos Grasos Volátiles , Anaerobiosis , Animales , Reactores Biológicos , Fermentación , Estadios del Ciclo de Vida , Aguas del Alcantarillado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA