Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lab Invest ; 101(11): 1505-1512, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34376780

RESUMEN

Endometrium-related malignancies including uterine endometrioid carcinoma, ovarian clear cell carcinoma and ovarian endometrioid carcinoma are major types of gynecologic cancer, claiming more than 13,000 women's lives annually in the United States. In vitro cell models that recapitulate "normal" endometrial epithelial cells and their malignant counterparts are critically needed to facilitate the studies of pathogenesis in endometrium-related carcinomas. To achieve this objective, we have established a human endometrial epithelial cell line, hEM3, through immortalization and clonal selection from a primary human endometrium culture. hEM3 exhibits stable growth in vitro without senescence. hEM3 expresses protein markers characteristic of the endometrial epithelium, and they include PAX8, EpCAM, cytokeratin 7/8, and ER. hEM3 does not harbor pathogenic germline mutations in genes involving DNA mismatch repair (MMR) or homologous repair (HR) pathways. Despite its unlimited capacity of in vitro proliferation, hEM3 cells are not transformed, as they are not tumorigenic in immunocompromised mice. The cell line is amenable for gene editing, and we have established several gene-specific knockout clones targeting ARID1A, a tumor suppressor gene involved in the SWI/SNF chromatin remodeling. Drug screening demonstrates that both HDAC inhibitor and PARP inhibitor are effective in targeting cells with ARID1A deletion. Together, our data support the potential of hEM3 as a cell line model for studying the pathobiology of endometrium-related diseases and for developing effective precision therapies.


Asunto(s)
Línea Celular , Evaluación Preclínica de Medicamentos , Endometrio/citología , Células Epiteliales , Animales , Femenino , Humanos , Ratones , Receptores de Estrógenos/metabolismo
2.
Front Genet ; 15: 1402667, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113682

RESUMEN

Genetic variability persists across diverse populations, and it may impact the characterization of heritable diseases in different ancestral groups. Cystinosis is a metabolic disease caused by pathogenic variants in the CTNS gene causing the cellular accumulation of cystine. We attempted to assess the currently poorly characterized prevalence of cystinosis by employing a population genetics methodology. However, we encountered a significant challenge due to genetic variations across different populations, and the consideration of potential disparities in access to healthcare made our results inconclusive. Pathogenic CTNS variants were identified in a representative global population cohort using The Human Gene Mutation Database (HGMD) and the 1000 Genomes (1 KG) database. The c.124G>A (p.Val42Ile) variant was reported to be pathogenic based on an observation in the white population presenting with atypical phenotypes, but it would be reclassified as benign in the African ancestral group if applying the ACMG allele frequency guideline due to its high allele frequency specifically in this population. Inclusion or exclusion of this c.124G>A (p.Val42Ile) variant results in a significant change in estimated disease prevalence, which can impact the diagnosis and treatment of affected patients with a broad range of phenotypic presentations. This observation led us to postulate that pathogenic manifestations of the disease may be underdiagnosed due to variable expressivity and systemic inequities in access to care, specifically in the African subpopulation. We call for a more cautious and inclusive approach to achieve more equitable care across diverse populations.

3.
Cancer Res ; 80(20): 4514-4526, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32859605

RESUMEN

Amplification and overexpression of the MYC oncogene in tumor cells, including ovarian cancer cells, correlates with poor responses to chemotherapy. As MYC is not directly targetable, we have analyzed molecular pathways downstream of MYC to identify potential therapeutic targets. Here we report that ovarian cancer cells overexpressing glutaminase (GLS), a target of MYC and a key enzyme in glutaminolysis, are intrinsically resistant to platinum-based chemotherapy and are enriched with intracellular antioxidant glutathione. Deprivation of glutamine by glutamine-withdrawal, GLS knockdown, or exposure to the GLS inhibitor CB-839 resulted in robust induction of reactive oxygen species in high GLS-expressing but not in low GLS-expressing ovarian cancer cells. Treatment with CB-839 rendered GLShigh cells vulnerable to the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib, and prolonged survival in tumor-bearing mice. These findings suggest consideration of applying a combined therapy of GLS inhibitor and PARP inhibitor to treat chemoresistant ovarian cancers, especially those with high GLS expression. SIGNIFICANCE: Targeting glutaminase disturbs redox homeostasis and nucleotide synthesis and causes replication stress in cancer cells, representing an exploitable vulnerability for the development of effective therapeutics. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/20/4514/F1.large.jpg.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Glutaminasa/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Bencenoacetamidas/administración & dosificación , Bencenoacetamidas/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Glutaminasa/antagonistas & inhibidores , Glutamina/genética , Glutamina/metabolismo , Glutatión/metabolismo , Humanos , Ratones Desnudos , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Ftalazinas/administración & dosificación , Ftalazinas/farmacología , Piperazinas/administración & dosificación , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Proto-Oncogénicas c-myc/genética , Tiadiazoles/administración & dosificación , Tiadiazoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA