Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(7): e1010666, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35816515

RESUMEN

The apical complex of apicomplexan parasites is essential for host cell invasion and intracellular survival and as the site of regulated exocytosis from specialised secretory organelles called rhoptries and micronemes. Despite its importance, there are few data on the three-dimensional organisation and quantification of these organelles within the apical complex or how they are trafficked to this specialised region of plasma membrane for exocytosis. In coccidian apicomplexans there is an additional tubulin-containing hollow barrel structure, the conoid, which provides a structural gateway for this specialised apical secretion. Using a combination of cellular electron tomography and serial block face-scanning electron microscopy (SBF-SEM) we have reconstructed the entire apical end of Eimeria tenella sporozoites; we report a detailed dissection of the three- dimensional organisation of the conoid and show there is high curvature of the tubulin-containing fibres that might be linked to the unusual comma-shaped arrangement of protofilaments. We quantified the number and location of rhoptries and micronemes within cells and show a highly organised gateway for trafficking and docking of rhoptries, micronemes and microtubule-associated vesicles within the conoid around a set of intra-conoidal microtubules. Finally, we provide ultrastructural evidence for fusion of rhoptries directly through the parasite plasma membrane early in infection and the presence of a pore in the parasitophorous vacuole membrane, providing a structural explanation for how rhoptry proteins may be trafficked between the parasite and the host cytoplasm.


Asunto(s)
Eimeria tenella , Parásitos , Animales , Eimeria tenella/metabolismo , Eimeria tenella/ultraestructura , Tomografía con Microscopio Electrónico , Orgánulos/metabolismo , Parásitos/metabolismo , Proteínas Protozoarias/metabolismo , Tubulina (Proteína)/metabolismo
2.
Avian Pathol ; : 1-5, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33823695

RESUMEN

Coccidiosis, caused by Eimeria species parasites, remains a major threat to poultry production, undermining economic performance and compromising welfare. The recent characterization of three new Eimeria species that infect chickens has highlighted that many gaps remain in our knowledge of the biology and epidemiology of these parasites. Concerns about the use of anticoccidial drugs, widespread parasite drug resistance, the need for vaccines that can be used across broiler as well as layer and breeder sectors, and consumer preferences for "clean" farming, all point to the need for novel control strategies. New research tools including vaccine delivery vectors, high throughput sequencing, parasite transgenesis and sensitive molecular assays that can accurately assess parasite development in vitro and in vivo are all proving helpful in the ongoing quest for improved cost-effective, scalable strategies for future control of coccidiosis.

3.
Vet Res ; 51(1): 115, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928271

RESUMEN

Coccidiosis, caused by Eimeria species parasites, has long been recognised as an economically significant disease of chickens. As the global chicken population continues to grow, and its contribution to food security intensifies, it is increasingly important to assess the impact of diseases that compromise chicken productivity and welfare. In 1999, Williams published one of the most comprehensive estimates for the cost of coccidiosis in chickens, featuring a compartmentalised model for the costs of prophylaxis, treatment and losses, indicating a total cost in excess of £38 million in the United Kingdom (UK) in 1995. In the 25 years since this analysis the global chicken population has doubled and systems of chicken meat and egg production have advanced through improved nutrition, husbandry and selective breeding of chickens, and wider use of anticoccidial vaccines. Using data from industry representatives including veterinarians, farmers, production and health experts, we have updated the Williams model and estimate that coccidiosis in chickens cost the UK £99.2 million in 2016 (range £73.0-£125.5 million). Applying the model to data from Brazil, Egypt, Guatemala, India, New Zealand, Nigeria and the United States resulted in estimates that, when extrapolated by geographical region, indicate a global cost of ~ £10.4 billion at 2016 prices (£7.7-£13.0 billion), equivalent to £0.16/chicken produced. Understanding the economic costs of livestock diseases can be advantageous, providing baselines to evaluate the impact of different husbandry systems and interventions. The updated cost of coccidiosis in chickens will inform debates on the value of chemoprophylaxis and development of novel anticoccidial vaccines.


Asunto(s)
Crianza de Animales Domésticos/economía , Pollos , Coccidiosis/veterinaria , Enfermedades de las Aves de Corral/economía , Animales , Coccidiosis/economía
4.
Parasitology ; 147(3): 263-278, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31727204

RESUMEN

Apicomplexans, including species of Eimeria, pose a real threat to the health and wellbeing of animals and humans. Eimeria parasites do not infect humans but cause an important economic impact on livestock, in particular on the poultry industry. Despite its high prevalence and financial costs, little is known about the cell biology of these 'cosmopolitan' parasites found all over the world. In this review, we discuss different aspects of the life cycle and stages of Eimeria species, focusing on cellular structures and organelles typical of the coccidian family as well as genus-specific features, complementing some 'unknowns' with what is described in the closely related coccidian Toxoplasma gondii.


Asunto(s)
Pollos , Coccidiosis/veterinaria , Eimeria/fisiología , Estadios del Ciclo de Vida , Enfermedades de las Aves de Corral/parasitología , Animales , Coccidiosis/parasitología , Eimeria/crecimiento & desarrollo , Orgánulos/fisiología
5.
Infect Immun ; 87(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30510107

RESUMEN

Eimeria tenella can cause the disease coccidiosis in chickens. The direct and often detrimental impact of this parasite on chicken health, welfare, and productivity is well recognized; however, less is known about the secondary effects that infection may have on other gut pathogens. Campylobacter jejuni is the leading cause of human bacterial foodborne disease in many countries and has been demonstrated to exert negative effects on poultry welfare and production in some broiler lines. Previous studies have shown that concurrent Eimeria infection can influence the colonization and replication of bacteria, such as Clostridium perfringens and Salmonella enterica serovar Typhimurium. Through a series of in vivo coinfection experiments, this study evaluated the impact that E. tenella infection had on C. jejuni colonization of chickens, including the influence of variations in parasite dose and sampling time after bacterial challenge. Coinfection with E. tenella resulted in a significant increase in C. jejuni colonization in the cecum in a parasite dose-dependent manner but a significant decrease in C. jejuni colonization in the spleen and liver of chickens. The results were reproducible at 3 and 10 days after bacterial infection. This work highlights that E. tenella not only has a direct impact on the health and well-being of chickens but can have secondary effects on important zoonotic pathogens.


Asunto(s)
Infecciones por Campylobacter/microbiología , Campylobacter jejuni/aislamiento & purificación , Pollos/microbiología , Coccidiosis/complicaciones , Coinfección , Eimeria tenella , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/parasitología , Animales , Ciego/microbiología , Coinfección/microbiología , Coinfección/parasitología
6.
Avian Pathol ; 48(sup1): S60-S74, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31032631

RESUMEN

Dermanyssus gallinae, the poultry red mite, is a global threat to the commercial egg-laying industry. Control of D. gallinae is difficult, with only a limited number of effective pesticides and non-chemical treatments available. Here, we characterize the candidate vaccine antigen D. gallinae cathepsin D-1 (Dg-CatD-1) and demonstrate that purified refolded recombinant Dg-Cat-D1 (rDg-CatD-1) is an active aspartyl proteinase which digests haemoglobin with a pH optimum of pH 4. Soluble protein extracts from D. gallinae also have haemoglobinase activity, with a pH optimum comparable to the recombinant protein, and both proteinase activities were inhibited by the aspartyl proteinase inhibitor Pepstatin A. Enzyme activity and the ubiquitous localization of Dg-CatD-1 protein in sections of adult female mites is consistent with Dg-CatD-1 being a lysosomal proteinase. Using Dg-CatD-1 as a model vaccine antigen, we compared vaccine delivery methods in laying hens via vaccination with: (i) purified rDg-CatD-1 with Montanide™ ISA 71 VG adjuvant; (ii) recombinant DNA vaccines for expression of rDg-CatD-1 and (iii) transgenic coccidial parasite Eimeria tenella expressing rDg-CatD-1. In two independent trials, only birds vaccinated with rDg-CatD-1 with Montanide™ ISA 71 VG produced a strong and long-lasting serum anti-rDg-Cat-D1 IgY response, which was significantly higher than that in control birds vaccinated with adjuvant only. Furthermore, we showed that egg-laying rates of D. gallinae mites fed on birds vaccinated with rDg-CatD-1 in Montanide™ ISA 71 VG was reduced significantly compared with mites fed on unvaccinated birds. RESEARCH HIGHLIGHTS Dermanyssus gallinae cathepsin D-1 (Dg-CatD-1) digests haemoglobin Vaccination of hens with rDg-CatD-1 in Montanide™ ISA 71 VG results in long-lasting IgY levels Serum anti-rDg-CatD-1 antibodies reduce egg laying in D. gallinae after a single blood meal.


Asunto(s)
Pollos/inmunología , Infestaciones por Ácaros/veterinaria , Ácaros/inmunología , Enfermedades de las Aves de Corral/prevención & control , Vacunación/veterinaria , Vacunas/administración & dosificación , Adyuvantes Inmunológicos , Animales , Formación de Anticuerpos , Pollos/parasitología , Femenino , Infestaciones por Ácaros/parasitología , Infestaciones por Ácaros/prevención & control , Proteínas Recombinantes
7.
Genet Sel Evol ; 50(1): 63, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30463512

RESUMEN

BACKGROUND: Coccidiosis is a major contributor to losses in poultry production. With emerging constraints on the use of in-feed prophylactic anticoccidial drugs and the relatively high costs of effective vaccines, there are commercial incentives to breed chickens with greater resistance to this important production disease. To identify phenotypic biomarkers that are associated with the production impacts of coccidiosis, and to assess their covariance and heritability, 942 Cobb500 commercial broilers were subjected to a defined challenge with Eimeria tenella (Houghton). Three traits were measured: weight gain (WG) during the period of infection, caecal lesion score (CLS) post mortem, and the level of a serum biomarker of intestinal inflammation, i.e. circulating interleukin 10 (IL-10), measured at the height of the infection. RESULTS: Phenotypic analysis of the challenged chicken cohort revealed a significant positive correlation between CLS and IL-10, with significant negative correlations of both these traits with WG. Eigenanalysis of phenotypic covariances between measured traits revealed three distinct eigenvectors. Trait weightings of the first eigenvector, (EV1, eigenvalue = 59%), were biologically interpreted as representing a response of birds that were susceptible to infection, with low WG, high CLS and high IL-10. Similarly, the second eigenvector represented infection resilience/resistance (EV2, 22%; high WG, low CLS and high IL-10), and the third eigenvector tolerance (EV3, 19%; high WG, high CLS and low IL-10), respectively. Genome-wide association studies (GWAS) identified two SNPs that were associated with WG at the suggestive level. CONCLUSIONS: Eigenanalysis separated the phenotypic impact of a defined challenge with E. tenella on WG, caecal inflammation/pathology, and production of IL-10 into three major eigenvectors, indicating that the susceptibility-resistance axis is not a single continuous quantitative trait. The SNPs identified by the GWAS for body weight were located in close proximity to two genes that are involved in innate immunity (FAM96B and RRAD).


Asunto(s)
Pollos/genética , Coccidiosis/veterinaria , Eimeria tenella/patogenicidad , Interleucina-10/sangre , Animales , Peso Corporal/genética , Ciego/patología , Coccidiosis/genética , Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Interleucina-10/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Enfermedades de las Aves de Corral/genética , Aumento de Peso/genética
8.
Proc Natl Acad Sci U S A ; 112(38): E5343-50, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26354122

RESUMEN

The phylum Apicomplexa includes serious pathogens of humans and animals. Understanding the distribution and population structure of these protozoan parasites is of fundamental importance to explain disease epidemiology and develop sustainable controls. Predicting the likely efficacy and longevity of subunit vaccines in field populations relies on knowledge of relevant preexisting antigenic diversity, population structure, the likelihood of coinfection by genetically distinct strains, and the efficiency of cross-fertilization. All four of these factors have been investigated for Plasmodium species parasites, revealing both clonal and panmictic population structures with exceptional polymorphism associated with immunoprotective antigens such as apical membrane antigen 1 (AMA1). For the coccidian Toxoplasma gondii only genomic diversity and population structure have been defined in depth so far; for the closely related Eimeria species, all four variables are currently unknown. Using Eimeria tenella, a major cause of the enteric disease coccidiosis, which exerts a profound effect on chicken productivity and welfare, we determined population structure, genotype distribution, and likelihood of cross-fertilization during coinfection and also investigated the extent of naturally occurring antigenic diversity for the E. tenella AMA1 homolog. Using genome-wide Sequenom SNP-based haplotyping, targeted sequencing, and single-cell genotyping, we show that in this coccidian the functionality of EtAMA1 appears to outweigh immune evasion. This result is in direct contrast to the situation in Plasmodium and most likely is underpinned by the biology of the direct and acute coccidian life cycle in the definitive host.


Asunto(s)
Variación Antigénica , Eimeria tenella/genética , Eimeria tenella/inmunología , Animales , Antígenos de Protozoos/inmunología , Secuencia de Bases , Pollos/parasitología , Coccidiosis/parasitología , Cruzamientos Genéticos , Heces , Variación Genética , Genética de Población , Genotipo , Geografía , Datos de Secuencia Molecular , Oocistos , Filogenia , Plasmodium/genética , Plasmodium/inmunología , Polimorfismo de Nucleótido Simple , Enfermedades de las Aves de Corral/parasitología , Vacunas Antiprotozoos
9.
Genome Res ; 24(10): 1676-85, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25015382

RESUMEN

Global production of chickens has trebled in the past two decades and they are now the most important source of dietary animal protein worldwide. Chickens are subject to many infectious diseases that reduce their performance and productivity. Coccidiosis, caused by apicomplexan protozoa of the genus Eimeria, is one of the most important poultry diseases. Understanding the biology of Eimeria parasites underpins development of new drugs and vaccines needed to improve global food security. We have produced annotated genome sequences of all seven species of Eimeria that infect domestic chickens, which reveal the full extent of previously described repeat-rich and repeat-poor regions and show that these parasites possess the most repeat-rich proteomes ever described. Furthermore, while no other apicomplexan has been found to possess retrotransposons, Eimeria is home to a family of chromoviruses. Analysis of Eimeria genes involved in basic biology and host-parasite interaction highlights adaptations to a relatively simple developmental life cycle and a complex array of co-expressed surface proteins involved in host cell binding.


Asunto(s)
Eimeria/genética , Genoma de Protozoos , Proteínas Protozoarias/genética , Animales , Línea Celular , Pollos , Mapeo Cromosómico , Coccidiosis/parasitología , Coccidiosis/veterinaria , Eimeria/clasificación , Perfilación de la Expresión Génica , Filogenia , Enfermedades de las Aves de Corral/parasitología , Proteoma , Sintenía
10.
BMC Vet Res ; 12: 86, 2016 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-27259544

RESUMEN

BACKGROUND: Chicken is fast becoming the world's most consumed meat. As a consequence poultry health is more important now than ever before, with pathogens of chickens recognised as serious threats to food security. One such threat are Eimeria species parasites, protozoa which can cause the disease coccidiosis. Eimeria can compromise economic poultry production and chicken welfare, and have serious consequences for poor livestock keepers. Seven Eimeria species that infect chickens are recognised with a global enzootic distribution. More recently three cryptic Operational Taxonomic Units (OTUx, y and z) have been described in populations of Eimeria recovered from chickens in Australia. Two of the three OTUs have also been detected in sub-Saharan Africa, but their occurrence, pathology and the risk they pose is largely unknown. RESULTS: Nigeria has witnessed a dramatic expansion in poultry production and is now the largest poultry producer in Africa. Here, faecal samples collected from nine of 12 commercial chicken farms sampled in Kaduna state, Nigeria, were found to contain eimerian oocysts. After amplification by in vivo propagation all three cryptic OTU genotypes were detected using polymerase chain reaction (PCR), including OTUy for the first time outside of Australia. Comparison with a widely used, established Eimeria species-specific PCR assay revealed failure to detect the OTU genotypes. CONCLUSIONS: All three of the Eimeria OTU genotypes appear to be common in north-western Nigeria. The failure of a leading species-specific molecular assay to detect these genotypes indicates a risk of false negative Eimeria diagnosis when using molecular tools and suggests that the spatial occurrence of each OTU may be far wider than has been recognised. The risk posed by these novel genotypes is unknown, but it is clear that a better understanding of Eimeria occurrence is required together with the validation of effective diagnostics.


Asunto(s)
Pollos , Coccidiosis/veterinaria , Eimeria/aislamiento & purificación , Enfermedades de las Aves de Corral/parasitología , Animales , Coccidiosis/diagnóstico , Eimeria/clasificación , Eimeria/genética , Genotipo , Técnicas de Diagnóstico Molecular/veterinaria , Nigeria , Reacción en Cadena de la Polimerasa/veterinaria , Enfermedades de las Aves de Corral/diagnóstico
11.
PLoS One ; 19(7): e0307291, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39024284

RESUMEN

Cell culture systems have long been recognised as great resources to mitigate the use of animals in research, offering effective solutions for replacement or reduction with benefits commonly including lower costs, shorter duration and improved reproducibility. The use of in vitro culture methods has been extensively explored for many apicomplexan parasites, supporting significant research advances, but studies with Eimeria are often limited since they still depend on the animal host. In this study we have used 2.5D and 3D culture systems for the first time to evaluate the growth of Eimeria tenella parasites using a panel of cell lines (MDBK, HD11, COLO-680N and HCC4006). Results were compared to growth in 2D monolayers following established protocols. Observations using the fluorescent transgenic strain Et-dYFP showed invasion and development of parasites inside cells suspended in a collagen matrix (2.5D or 3D), supporting the development of asexual stages with the release of first-generation merozoites. Similar findings were observed when Scaffold-free 3D cell spheroids of HD11 cells were infected with sporozoites. No subsequent developmental stages were identified while evaluating these cell lines and further work will be required to improve in vitro culture systems to a point where reduction and replacement of animal use becomes routine.


Asunto(s)
Técnicas de Cultivo de Célula , Eimeria tenella , Eimeria tenella/crecimiento & desarrollo , Animales , Técnicas de Cultivo de Célula/métodos , Humanos , Línea Celular , Esporozoítos/crecimiento & desarrollo , Esferoides Celulares/parasitología
12.
PLoS Pathog ; 7(10): e1002296, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22022267

RESUMEN

Eimeria spp. are a highly successful group of intracellular protozoan parasites that develop within intestinal epithelial cells of poultry, causing coccidiosis. As a result of resistance against anticoccidial drugs and the expense of manufacturing live vaccines, it is necessary to understand the relationship between Eimeria and its host more deeply, with a view to developing recombinant vaccines. Eimeria possesses a family of microneme lectins (MICs) that contain microneme adhesive repeat regions (MARR). We show that the major MARR protein from Eimeria tenella, EtMIC3, is deployed at the parasite-host interface during the early stages of invasion. EtMIC3 consists of seven tandem MAR1-type domains, which possess a high specificity for sialylated glycans as shown by cell-based assays and carbohydrate microarray analyses. The restricted tissue staining pattern observed for EtMIC3 in the chicken caecal epithelium indicates that EtMIC3 contributes to guiding the parasite to the site of invasion in the chicken gut. The microarray analyses also reveal a lack of recognition of glycan sequences terminating in the N-glycolyl form of sialic acid by EtMIC3. Thus the parasite is well adapted to the avian host which lacks N-glycolyl neuraminic acid. We provide new structural insight into the MAR1 family of domains and reveal the atomic resolution basis for the sialic acid-based carbohydrate recognition. Finally, a preliminary chicken immunization trial provides evidence that recombinant EtMIC3 protein and EtMIC3 DNA are effective vaccine candidates.


Asunto(s)
Coccidiosis/veterinaria , Eimeria tenella/metabolismo , Interacciones Huésped-Parásitos , Lectinas/metabolismo , Polisacáridos/metabolismo , Enfermedades de las Aves de Corral/parasitología , Proteínas Protozoarias/metabolismo , Vacunas Sintéticas/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Pollos/inmunología , Pollos/parasitología , Coccidiosis/parasitología , Coccidiosis/prevención & control , Eimeria tenella/genética , Eimeria tenella/inmunología , Eimeria tenella/patogenicidad , Intestinos/parasitología , Intestinos/patología , Lectinas/genética , Lectinas/inmunología , Ácidos Neuramínicos , Enfermedades de las Aves de Corral/prevención & control , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Vacunas Antiprotozoos/inmunología , Alineación de Secuencia , Análisis de Secuencia de ADN , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/inmunología
13.
Front Cell Infect Microbiol ; 13: 1082622, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033474

RESUMEN

Introduction: Refractile bodies (RB) are large membrane-less organelles (MLO) of unknown function found as a prominent mismatched pair within the sporozoite stages of all species of Eimeria, parasitic coccidian protozoa. Methods: High resolution imaging methods including time-lapse live confocal microscopy and serial block face-scanning electron microscopy (SBF-SEM) were used to investigate the morphology of RB and other intracellular organelles before and after sporozoite invasion of host cells. Results: Live cell imaging of MDBK cells infected with E. tenella sporozoites confirmed previous reports that RB reduce from two to one post-infection and showed that reduction in RB number occurs via merger of the anterior RB with the posterior RB, a process that lasts 20-40 seconds and takes place between 2- and 5-hours post-infection. Ultrastructural studies using SBF-SEM on whole individual sporozoites, both pre- and post-host cell invasion, confirmed the live cell imaging observations and showed also that changes to the overall sporozoite cell shape accompanied RB merger. Furthermore, the single RB post-merger was found to be larger in volume than the two RB pre-merger. Actin inhibitors were used to investigate a potential role for actin in RB merger, Cytochalasin D significantly inhibited both RB merger and the accompanying changes in sporozoite cell shape. Discussion: MLOs in eukaryotic organisms are characterised by their lack of a membrane and ability to undergo liquid-liquid phase separation (LLPS) and fusion, usually in an actin-mediated fashion. Based on the changes in sporozoite cell shape observed at the time of RB merger together with a potential role for actin in this process, we propose that RB are classed as an MLO and recognised as one of the largest MLOs so far characterised.


Asunto(s)
Pollos , Coccidiosis , Eimeria tenella , Orgánulos , Enfermedades de las Aves de Corral , Esporozoítos , Animales , Actinas/metabolismo , Pollos/metabolismo , Pollos/parasitología , Eimeria tenella/metabolismo , Eimeria tenella/fisiología , Orgánulos/metabolismo , Orgánulos/fisiología , Esporozoítos/metabolismo , Esporozoítos/fisiología , Coccidiosis/metabolismo , Coccidiosis/parasitología , Coccidiosis/fisiopatología , Enfermedades de las Aves de Corral/metabolismo , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/fisiopatología
14.
BMC Genomics ; 13: 685, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23216867

RESUMEN

BACKGROUND: Proteases regulate pathogenesis in apicomplexan parasites but investigations of proteases have been largely confined to the asexual stages of Plasmodium falciparum and Toxoplasma gondii. Thus, little is known about proteases in other Apicomplexa, particularly in the sexual stages. We screened the Eimeria tenella genome database for proteases, classified these into families and determined their stage specific expression. RESULTS: Over forty protease genes were identified in the E. tenella genome. These were distributed across aspartic (three genes), cysteine (sixteen), metallo (fourteen) and serine (twelve) proteases. Expression of at least fifteen protease genes was upregulated in merozoites including homologs of genes known to be important in host cell invasion, remodelling and egress in P. falciparum and/or T. gondii. Thirteen protease genes were specifically expressed or upregulated in gametocytes; five of these were in two families of serine proteases (S1 and S8) that are over-represented in the coccidian parasites, E. tenella and T. gondii, distinctive within the Apicomplexa because of their hard-walled oocysts. Serine protease inhibitors prevented processing of EtGAM56, a protein from E. tenella gametocytes that gives rise to tyrosine-rich peptides that are incorporated into the oocyst wall. CONCLUSION: Eimeria tenella possesses a large number of protease genes. Expression of many of these genes is upregulated in asexual stages. However, expression of almost one-third of protease genes is upregulated in, or confined to gametocytes; some of these appear to be unique to the Coccidia and may play key roles in the formation of the oocyst wall, a defining feature of this group of parasites.


Asunto(s)
Eimeria tenella/enzimología , Eimeria tenella/genética , Péptido Hidrolasas/genética , Animales , Ciego/parasitología , Pollos/parasitología , Coccidiosis/parasitología , Eimeria tenella/crecimiento & desarrollo , Regulación de la Expresión Génica , Genoma de Protozoos , Biblioteca Genómica , Merozoítos/metabolismo , Oocistos/metabolismo , Péptido Hidrolasas/biosíntesis , Péptido Hidrolasas/metabolismo
15.
BMC Genomics ; 13: 21, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22244352

RESUMEN

BACKGROUND: Eimeria tenella is an apicomplexan parasite that causes coccidiosis in the domestic fowl. Infection with this parasite is diagnosed frequently in intensively reared poultry and its control is usually accorded a high priority, especially in chickens raised for meat. Prophylactic chemotherapy has been the primary method used for the control of coccidiosis. However, drug efficacy can be compromised by drug-resistant parasites and the lack of new drugs highlights demands for alternative control strategies including vaccination. In the long term, sustainable control of coccidiosis will most likely be achieved through integrated drug and vaccination programmes. Characterisation of the E. tenella transcriptome may provide a better understanding of the biology of the parasite and aid in the development of a more effective control for coccidiosis. RESULTS: More than 15,000 partial sequences were generated from the 5' and 3' ends of clones randomly selected from an E. tenella second generation merozoite full-length cDNA library. Clustering of these sequences produced 1,529 unique transcripts (UTs). Based on the transcript assembly and subsequently primer walking, 433 full-length cDNA sequences were successfully generated. These sequences varied in length, ranging from 441 bp to 3,083 bp, with an average size of 1,647 bp. Simple sequence repeat (SSR) analysis identified CAG as the most abundant trinucleotide motif, while codon usage analysis revealed that the ten most infrequently used codons in E. tenella are UAU, UGU, GUA, CAU, AUA, CGA, UUA, CUA, CGU and AGU. Subsequent analysis of the E. tenella complete coding sequences identified 25 putative secretory and 60 putative surface proteins, all of which are now rational candidates for development as recombinant vaccines or drug targets in the effort to control avian coccidiosis. CONCLUSIONS: This paper describes the generation and characterisation of full-length cDNA sequences from E. tenella second generation merozoites and provides new insights into the E. tenella transcriptome. The data generated will be useful for the development and validation of diagnostic and control strategies for coccidiosis and will be of value in annotation of the E. tenella genome sequence.


Asunto(s)
ADN Complementario/química , Eimeria tenella/genética , Transcriptoma , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Mapeo Cromosómico , Codón , Secuencia de Consenso , Genoma de Protozoos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Motivos de Nucleótidos , Sistemas de Lectura Abierta , Proteínas Protozoarias/química , Secuencias Repetitivas de Ácidos Nucleicos , Alineación de Secuencia , Análisis de Secuencia de ADN , Sitio de Iniciación de la Transcripción , Regiones no Traducidas
16.
Front Immunol ; 13: 809711, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185896

RESUMEN

Cheap, easy-to-produce oral vaccines are needed for control of coccidiosis in chickens to reduce the impact of this disease on welfare and economic performance. Saccharomyces cerevisiae yeast expressing three Eimeria tenella antigens were developed and delivered as heat-killed, freeze-dried whole yeast oral vaccines to chickens in four separate studies. After vaccination, E. tenella replication was reduced following low dose challenge (250 oocysts) in Hy-Line Brown layer chickens (p<0.01). Similarly, caecal lesion score was reduced in Hy-Line Brown layer chickens vaccinated using a mixture of S. cerevisiae expressing EtAMA1, EtIMP1 and EtMIC3 following pathogenic-level challenge (4,000 E. tenella oocysts; p<0.01). Mean body weight gain post-challenge with 15,000 E. tenella oocysts was significantly increased in vaccinated Cobb500 broiler chickens compared to mock-vaccinated controls (p<0.01). Thus, inactivated recombinant yeast vaccines offer cost-effective and scalable opportunities for control of coccidiosis, with relevance to broiler production and chickens reared in low-and middle-income countries (LMICs).


Asunto(s)
Coccidiosis/veterinaria , Eimeria tenella/inmunología , Enfermedades de las Aves de Corral/parasitología , Proteínas Protozoarias/inmunología , Vacunas Antiprotozoos/inmunología , Animales , Pollos/inmunología , Pollos/parasitología , Coccidiosis/prevención & control , Eimeria tenella/crecimiento & desarrollo , Femenino , Masculino , Enfermedades de las Aves de Corral/prevención & control , Proteínas Protozoarias/genética , Vacunas Antiprotozoos/genética , Saccharomyces cerevisiae/inmunología , Vacunación/métodos , Vacunación/veterinaria , Vacunas de Subunidad/inmunología
17.
Ecohealth ; 19(3): 378-389, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35948736

RESUMEN

The Coronavirus Disease 2019 (COVID-19) spread rapidly from China to most other countries around the world in early 2020 killing millions of people. To prevent virus spread, world governments implemented a variety of response measures. This paper's objectives were to discuss the country's adopted measures to combat the virus through June 2020, identify gaps in the measures' effectiveness, and offer possible mitigations to those gaps. The measures taken included screening device deployment across international air and land ports, flight suspensions and closures from COVID-19 affected countries, and declaration and extension of a national public holiday (equivalent to lockdowns in other countries). Identified gaps were test kit, PPE, ICU beds, and ventilator shortages, limited public awareness, and insufficient coordination and collaboration among national and international partners. Proper and timely risk mapping, preparedness, communication, coordination, and collaboration among governments and organizations, and public awareness and engagement would have provided sufficient COVID-19 mitigation in Bangladesh.


Asunto(s)
COVID-19 , Bangladesh/epidemiología , COVID-19/prevención & control , China , Control de Enfermedades Transmisibles , Humanos , Suspensiones
18.
Life (Basel) ; 11(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34575057

RESUMEN

The Coccidia are a subclass of the Apicomplexa and include several genera of protozoan parasites that cause important diseases in humans and animals, with Toxoplasma gondii becoming the 'model organism' for research into the coccidian molecular and cellular processes. The amenability to the cultivation of T. gondii tachyzoites and the wide availability of molecular tools for this parasite have revealed many mechanisms related to their cellular trafficking and roles of parasite secretory organelles, which are critical in parasite-host interaction. Nevertheless, the extrapolation of the T. gondii mechanisms described in tachyzoites to other coccidian parasites should be done carefully. In this review, we considered published data from Eimeria parasites, a coccidian genus comprising thousands of species whose infections have important consequences in livestock and poultry. These studies suggest that the Coccidia possess both shared and diversified mechanisms of protein trafficking and secretion potentially linked to their lifecycles. Whereas trafficking and secretion appear to be well conversed prior to and during host-cell invasion, important differences emerge once endogenous development commences. Therefore, further studies to validate the mechanisms described in T. gondii tachyzoites should be performed across a broader range of coccidians (including T. gondii sporozoites). In addition, further genus-specific research regarding important disease-causing Coccidia is needed to unveil the individual molecular mechanisms of pathogenesis related to their specific lifecycles and hosts.

19.
Int J Parasitol ; 51(8): 621-634, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33713650

RESUMEN

More than 68 billion chickens were produced globally in 2018, emphasising their major contribution to the production of protein for human consumption and the importance of their pathogens. Protozoan Eimeria spp. are the most economically significant parasites of chickens, incurring global costs of more than UK £10.4 billion per annum. Seven Eimeria spp. have long been recognised to infect chickens, with three additional cryptic operational taxonomic units (OTUs) first described more than 10 years ago. As the world's farmers attempt to reduce reliance on routine use of antimicrobials in livestock production, replacing drugs that target a wide range of microbes with precise species- and sometimes strain-specific vaccines, the breakthrough of cryptic genetic types can pose serious problems. Consideration of biological characteristics including oocyst morphology, pathology caused during infection and pre-patent periods, combined with gene-coding sequences predicted from draft genome sequence assemblies, suggest that all three of these cryptic Eimeria OTUs possess sufficient genetic and biological diversity to be considered as new and distinct species. The ability of these OTUs to compromise chicken bodyweight gain and escape immunity induced by current commercially available anticoccidial vaccines indicates that they could pose a notable threat to chicken health, welfare, and productivity. We suggest the names Eimeria lata n. sp., Eimeria nagambie n. sp. and Eimeria zaria n. sp. for OTUs x, y and z, respectively, reflecting their appearance (x) or the origins of the first isolates of these novel species (y, z).


Asunto(s)
Coccidiosis , Eimeria , Enfermedades de las Aves de Corral , Vacunas Antiprotozoos , Animales , Pollos , Coccidiosis/prevención & control , Coccidiosis/veterinaria , Eimeria/genética , Humanos , Nigeria , Enfermedades de las Aves de Corral/prevención & control
20.
Front Vet Sci ; 8: 640041, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33693044

RESUMEN

Eimeria species parasites infect the gastrointestinal tract of chickens, causing disease and impacting on production. The poultry industry relies on anticoccidial drugs and live vaccines to control Eimeria and there is a need for novel, scalable alternatives. Understanding the outcomes of experimental infection in commercial chickens is valuable for assessment of novel interventions. We examined the impact of different infectious doses of Eimeria tenella (one low dose, three high doses) in three commercial layer chicken lines, evaluating lesion score, parasite replication and cytokine response in the caeca. Groups of eight to ten chickens were housed together and infected with 250, 4,000, 8,000 or 12,000 sporulated oocysts at 21 days of age. Five days post-infection caeca were assessed for lesions and to quantify parasite replication by qPCR and cytokine transcription by RT-qPCR. Comparison of the three high doses revealed no significant variation between them in observed lesions or parasite replication with all being significantly higher than the low dose infection. Transcription of IFN-γ and IL-10 increased in all infected chickens relative to unchallenged controls, with no significant differences associated with dose magnitude (p > 0.05). No significant differences were detected in lesion score, parasite replication or caecal cytokine expression between the three lines of chickens. We therefore propose 4,000 E. tenella oocysts is a sufficient dose to reliably induce lesions in commercial layer chickens, and that estimates of parasite replication can be derived by qPCR from these same birds. However, more accurate quantification of Eimeria replication requires a separate low dose challenge group. Optimisation of challenge dose in an appropriate chicken line is essential to maximize the value of in vivo efficacy studies. For coccidiosis, this approach can reduce the numbers of chickens required for statistically significant studies and reduce experimental severity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA