Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Respir Cell Mol Biol ; 61(2): 185-197, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30742488

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a versatile human pathogen that is associated with diverse types of infections ranging from benign colonization to sepsis. We postulated that MRSA must undergo specific genotypic and phenotypic changes to cause chronic pulmonary disease. We investigated how MRSA adapts to the human airway to establish chronic infection, as occurs during cystic fibrosis (CF). MRSA isolates from patients with CF that were collected over a 4-year period were analyzed by whole-genome sequencing, transcriptional analysis, and metabolic studies. Persistent MRSA infection was associated with staphylococcal metabolic adaptation, but not changes in immunogenicity. Adaptation was characterized by selective use of the tricarboxylic acid cycle cycle and generation of biofilm, a means of limiting oxidant stress. Increased transcription of specific metabolic genes was conserved in all host-adapted strains, most notably a 10,000-fold increase in fumC, which catalyzes the interconversion of fumarate and malate. Elevated fumarate levels promoted in vitro biofilm production in clinical isolates. Host-adapted strains preferred to assimilate glucose polymers and pyruvate, which can be metabolized to generate N-acetylglucosamine polymers that comprise biofilm. MRSA undergoes substantial metabolic adaptation to the human airway to cause chronic pulmonary infection, and selected metabolites may be useful therapeutically to inhibit infection.


Asunto(s)
Fibrosis Quística/microbiología , Enfermedades Pulmonares/microbiología , Staphylococcus aureus Resistente a Meticilina/metabolismo , Neumonía Estafilocócica/microbiología , Infecciones Estafilocócicas/microbiología , Acetilglucosamina/metabolismo , Adulto , Animales , Biopelículas , Bronquios/metabolismo , Líquido del Lavado Bronquioalveolar , Fibrosis Quística/metabolismo , Citocinas/metabolismo , Femenino , Fumaratos/metabolismo , Gentamicinas/farmacología , Glucosa/metabolismo , Humanos , Enfermedades Pulmonares/metabolismo , Malatos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Filogenia , Neumonía Estafilocócica/metabolismo , Ácido Pirúvico/metabolismo , Infecciones Estafilocócicas/metabolismo , Transcripción Genética , Ácidos Tricarboxílicos/metabolismo , Secuenciación Completa del Genoma
2.
Cell Rep ; 42(2): 112064, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36724077

RESUMEN

Neutrophils are critical in the host defense against Staphylococcus aureus, a major human pathogen. However, even in the setting of a robust neutrophil response, S. aureus can evade immune clearance. Here, we demonstrate that S. aureus impairs neutrophil function by triggering the production of the anti-inflammatory metabolite itaconate. The enzyme that synthesizes itaconate, Irg1, is selectively expressed in neutrophils during S. aureus pneumonia. Itaconate inhibits neutrophil glycolysis and oxidative burst, which impairs survival and bacterial killing. In a murine pneumonia model, neutrophil Irg1 expression protects the lung from excessive inflammation but compromises bacterial clearance. S. aureus is thus able to evade the innate immune response by targeting neutrophil metabolism and inducing the production of the anti-inflammatory metabolite itaconate.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Animales , Ratones , Neutrófilos/metabolismo , Estallido Respiratorio , Infecciones Estafilocócicas/microbiología
3.
Cell Metab ; 35(10): 1767-1781.e6, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37793346

RESUMEN

Pseudomonas aeruginosa is a common cause of pulmonary infection. As a Gram-negative pathogen, it can initiate a brisk and highly destructive inflammatory response; however, most hosts become tolerant to the bacterial burden, developing chronic infection. Using a murine model of pneumonia, we demonstrate that this shift from inflammation to disease tolerance is promoted by ketogenesis. In response to pulmonary infection, ketone bodies are generated in the liver and circulate to the lungs where they impose selection for P. aeruginosa strains unable to display surface lipopolysaccharide (LPS). Such keto-adapted LPS strains fail to activate glycolysis and tissue-damaging cytokines and, instead, facilitate mitochondrial catabolism of fats and oxidative phosphorylation (OXPHOS), which maintains airway homeostasis. Within the lung, P. aeruginosa exploits the host immunometabolite itaconate to further stimulate ketogenesis. This environment enables host-P. aeruginosa coexistence, supporting both pathoadaptive changes in the bacteria and the maintenance of respiratory integrity via OXPHOS.


Asunto(s)
Lipopolisacáridos , Pseudomonas aeruginosa , Ratones , Animales , Pulmón , Inflamación , Cuerpos Cetónicos
4.
Microb Cell ; 8(5): 106-107, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33981762

RESUMEN

Staphylococcus aureus is a prominent pathogen that can cause intractable lung infections in humans. S. aureus persists in the airway despite inflammation and immune cell recruitment by adapting to host-derived antimicrobial factors. A key component of the immune response to infection are host metabolites that regulate inflammation and bacterial survival. In our recent paper (Tomlinson et al., Nat Commun, doi: 10.1038/s41467-021-21718-y), we demonstrated that S. aureus induces the production of the immunoregulatory metabolite itaconate in airway immune cells by stimulating mitochondrial oxidant stress. Itaconate in turn inhibited S. aureus glycolysis and growth, and promoted carbon flux through bacterial metabolic pathways that support biofilm production. These itaconate-induced metabolic changes were recapitulated in a longitudinal series of clinical isolates from a patient with chronic staphylococcal lung infections, demonstrating a role for host immunometabolism in driving bacterial persistence during long-term staphylococcal lung infections.

5.
Front Immunol ; 12: 790574, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899759

RESUMEN

Pseudomonas aeruginosa and Staphylococcus aureus are both opportunistic pathogens that are frequently associated with chronic lung infections. While bacterial virulence determinants are critical in initiating infection, the metabolic flexibility of these bacteria promotes their persistence in the airway. Upon infection, these pathogens induce host immunometabolic reprogramming, resulting in an airway milieu replete with immune-signaling metabolites. These metabolites are often toxic to the bacteria and create a steep selection pressure for the emergence of bacterial isolates adapted for long-term survival in the inflamed lung. In this review, we discuss the main differences in the host immunometabolic response to P. aeruginosa and S. aureus, as well as how these pathogens alter their own metabolism to adapt to airway metabolites and cause persistent lung infections.


Asunto(s)
Metabolismo Energético , Pulmón/metabolismo , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Infecciones del Sistema Respiratorio/metabolismo , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Adaptación Fisiológica , Animales , Interacciones Huésped-Patógeno , Humanos , Pulmón/inmunología , Pulmón/microbiología , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/inmunología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/microbiología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Succinatos/metabolismo
6.
Nat Commun ; 12(1): 1399, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658521

RESUMEN

Staphylococcus aureus is a prominent human pathogen that readily adapts to host immune defenses. Here, we show that, in contrast to Gram-negative pathogens, S. aureus induces a distinct airway immunometabolic response dominated by the release of the electrophilic metabolite, itaconate. The itaconate synthetic enzyme, IRG1, is activated by host mitochondrial stress, which is induced by staphylococcal glycolysis. Itaconate inhibits S. aureus glycolysis and selects for strains that re-direct carbon flux to fuel extracellular polysaccharide (EPS) synthesis and biofilm formation. Itaconate-adapted strains, as illustrated by S. aureus isolates from chronic airway infection, exhibit decreased glycolytic activity, high EPS production, and proficient biofilm formation even before itaconate stimulation. S. aureus thus adapts to the itaconate-dominated immunometabolic response by producing biofilms, which are associated with chronic infection of the human airway.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/fisiología , Staphylococcus aureus/patogenicidad , Succinatos/metabolismo , Adulto , Animales , Biopelículas/crecimiento & desarrollo , Líquido del Lavado Bronquioalveolar , Metabolismo de los Hidratos de Carbono , Fibrosis Quística/microbiología , Regulación Bacteriana de la Expresión Génica , Glucólisis/efectos de los fármacos , Glucólisis/fisiología , Interacciones Huésped-Patógeno/inmunología , Humanos , Hidroliasas/metabolismo , Ratones Endogámicos C57BL , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Esputo/microbiología , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/aislamiento & purificación , Estrés Fisiológico , Succinatos/farmacología , Ácido Succínico/metabolismo , Adulto Joven
7.
Sci Transl Med ; 11(499)2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31270271

RESUMEN

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor best known for regulating cell proliferation and metabolism. PTEN forms a complex with the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) at the plasma membrane, and this complex is known to be functionally impaired in CF. Here, we demonstrated that the combined effect of PTEN and CFTR dysfunction stimulates mitochondrial activity, resulting in excessive release of succinate and reactive oxygen species. This environment promoted the colonization of the airway by Pseudomonas aeruginosa, bacteria that preferentially metabolize succinate, and stimulated an anti-inflammatory host response dominated by immune-responsive gene 1 (IRG1) and itaconate. The recruitment of myeloid cells induced by these strains was inefficient in clearing the infection and increased numbers of phagocytes accumulated under CFTR-PTEN axis dysfunction. This central metabolic defect in mitochondrial function due to impaired PTEN activity contributes to P. aeruginosa infection in CF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Pulmón/microbiología , Mitocondrias/metabolismo , Fosfohidrolasa PTEN/metabolismo , Infecciones por Pseudomonas/metabolismo , Animales , Carboxiliasas/metabolismo , Recuento de Colonia Microbiana , Fibrosis Quística/patología , Células HCT116 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inmunidad , Interleucina-1beta/metabolismo , Pulmón/inmunología , Ratones Endogámicos C57BL , Persona de Mediana Edad , Oxidantes/metabolismo , Estrés Oxidativo , Fosfohidrolasa PTEN/deficiencia , Pseudomonas aeruginosa/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Succinatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA