Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Autoimmun ; 146: 103229, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653165

RESUMEN

Primary sclerosing cholangitis (PSC) is an (auto)immune-mediated cholestatic liver disease with a yet unclear etiology. Increasing evidence points to an involvement of neutrophils in chronic liver inflammation and cirrhosis but also liver repair. Here, we investigate the role of the neutrophil extracellular trap (NET) component myeloperoxidase (MPO) and the therapeutic potential of DNase I and of neutrophil elastase (NE) inhibitor GW311616A on disease outcome in the multidrug resistance 2 knockout (Mdr2-/-) mouse, a PSC animal model. Initially, we observed the recruitment of MPO expressing cells and the formation of NETs in liver biopsies of PSC patients and in Mdr2-/- livers. Furthermore, sera of Mdr2-/- mice contained perinuclear anti-neutrophil cytoplasmic antibody (p-ANCA)-like reactivity similar to PSC patient sera. Also, hepatic NE activity was significantly higher in Mdr2-/- mice than in wild type littermates. Flow cytometry analyses revealed that during disease development a highly active neutrophil subpopulation established specifically in the liver of Mdr2-/- mice. However, absence of their MPO activity, as in MPO-deficient Mdr2-/- mice, showed no effect on hepatobiliary disease severity. In contrast, clearance of extracellular DNA by DNase I reduced the frequency of liver-resident neutrophils, plasmacytoid dendritic cells (pDCs) and CD103+ conventional DCs and decreased cholangiocyte injury. Combination of DNase I with a pDC-depleting antibody was additionally hepatocyte-protective. Most importantly, GW311616A, an orally bioavailable inhibitor of human NE, attenuated hepatobiliary injury in a TNFα-dependent manner and damped hyperproliferation of biliary epithelial cells. Further, hepatic immigration and activity of CD11b+ DCs as well as the secretion of IFNγ by hepatic CD4 and CD8 T cells were reduced. Our findings delineate neutrophils as important participants in the immune cell crosstalk that drives cholestatic liver disease and identify NET components as potential therapeutic targets.


Asunto(s)
Miembro 4 de la Subfamilia B de Casete de Unión a ATP , Colangitis Esclerosante , Modelos Animales de Enfermedad , Trampas Extracelulares , Ratones Noqueados , Neutrófilos , Animales , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Ratones , Humanos , Colangitis Esclerosante/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Colestasis/inmunología , Colestasis/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Hígado/patología , Hígado/inmunología , Hígado/metabolismo , Peroxidasa/metabolismo , Peroxidasa/inmunología , Desoxirribonucleasa I/metabolismo , Elastasa de Leucocito/metabolismo , Elastasa de Leucocito/antagonistas & inhibidores , Masculino , Femenino
2.
J Autoimmun ; 143: 103161, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141419

RESUMEN

Although type 1 diabetes (T1D) results from the autoimmune destruction of the insulin-producing ß-cells, its treatment is largely restricted to exogenous insulin administration. Only few therapies targeting the autoaggressive immune system have been introduced into clinical practice or are considered in clinical trials. Here, we provide a gene expression profile of the islet microenvironment obtained by laser-dissection microscopy in an inducible mouse model. Thereby, we have identified novel targets for immune intervention. Increased gene expression of most inflammatory proteins was apparent at day 10 after T1D induction and largely paralleled the observed degree of insulitis. We further focused on genes involved in leukocyte migration, including chemokines and their receptors. Besides the critical chemokine CXCL10, we found several other chemokines upregulated locally in temporary or chronic manner. Localization of the chemokine ligand/receptor pairs to the islet microenvironment has been confirmed by RNAscope. Interference with the CXCL16-CXCR6 and CX3CL1-CX3CR1 axes, but not the CCL5-CCR1/3/5 axis, resulted in reduced insulitis and lower T1D incidence. Further, we found that the receptors for the differentially expressed chemokines CXCL10, CXCL16 and CX3CL1 are distributed unevenly among islet autoantigen-specific T cells, which explains why the interference with just one chemokine axis cannot completely abrogate insulitis and T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Ratones , Animales , Ratones Endogámicos NOD , Quimiocina CXCL10/genética , Insulina/metabolismo
3.
Clin Exp Immunol ; 214(2): 131-143, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37458220

RESUMEN

Treatment of patients with recent-onset type 1 diabetes with an anti-CD3 antibody leads to the transient stabilization of C-peptide levels in responder patients. Partial efficacy may be explained by the entry of islet-reactive T-cells spared by and/or regenerated after the anti-CD3 therapy. The CXCR3/CXCL10 axis has been proposed as a key player in the infiltration of autoreactive T cells into the pancreatic islets followed by the destruction of ß cells. Combining the blockade of this axis using ACT-777991, a novel small-molecule CXCR3 antagonist, with anti-CD3 treatment may prevent further infiltration and ß-cell damage and thus, preserve insulin production. The effect of anti-CD3 treatment on circulating T-cell subsets, including CXCR3 expression, in mice was evaluated by flow cytometry. Anti-CD3/ACT-777991 combination treatment was assessed in the virally induced RIP-LCMV-GP and NOD diabetes mouse models. Treatments started at disease onset. The effects on remission rate, blood glucose concentrations, insulitis, and plasma C-peptide were evaluated for the combination treatment and the respective monotherapies. Anti-CD3 treatment induced transient lymphopenia but spared circulating CXCR3+ T cells. Combination therapy in both mouse models synergistically and persistently reduced blood glucose concentrations, resulting in increased disease remission rates compared to each monotherapy. At the study end, mice in disease remission demonstrated reduced insulitis and detectable plasma C-peptide levels. When treatments were initiated in non-severely hyperglycemic NOD mice at diabetes onset, the combination treatment led to persistent disease remission in all mice. These results provide preclinical validation and rationale to investigate the combination of ACT-777991 with anti-CD3 for the treatment of patients with recent-onset diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Ratones , Animales , Ratones Endogámicos NOD , Glucemia , Péptido C , Anticuerpos Monoclonales/uso terapéutico , Modelos Teóricos , Receptores CXCR3
4.
Cells ; 11(24)2022 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-36552768

RESUMEN

The development of nanoparticles (NPs) to enable the passage of drugs across blood-brain barrier (BBB) represents one of the main challenges in neuropharmacology. In recent years, NPs that are able to transport drugs and interact with brain endothelial cells have been tested. Here, we investigated whether the functionalization of avidin-nucleic-acid-nanoassembly (ANANAS) with apolipoprotein E (ApoE) would allow BBB passage in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Our results demonstrated that ANANAS was able to transiently cross BBB to reach the central nervous system (CNS), and ApoE did not enhance this property. Next, we investigated if ANANAS could improve CNS drug delivery. To this aim, the steroid dexamethasone was covalently linked to ANANAS through an acid-reversible hydrazone bond. Our data showed that the steroid levels in CNS tissues of SOD1G93A mice treated with nanoformulation were below the detection limit. This result demonstrates that the passage of BBB is not sufficient to guarantee the release of the cargo in CNS and that a different strategy for drug tethering should be devised. The present study furthermore highlights that NPs can be useful in improving the passage through biological barriers but may limit the interaction of the therapeutic compound with the specific target.


Asunto(s)
Esclerosis Amiotrófica Lateral , Nanopartículas , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Superóxido Dismutasa-1/metabolismo , Células Endoteliales/metabolismo , Modelos Animales de Enfermedad , Preparaciones Farmacéuticas , Nanopartículas/química
5.
ACS Nano ; 13(4): 4410-4423, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30883091

RESUMEN

Steroids are the standard therapy for autoimmune hepatitis (AIH) but the long-lasting administration is hampered by severe side effects. Methods to improve the tropism of the drug toward the liver are therefore required. Among them, conjugation to nanoparticles represents one possible strategy. In this study, we exploited the natural liver tropism of Avidin-Nucleic-Acid-Nano-Assemblies (ANANAS) to carry dexamethasone selectively to the liver in an AIH animal model. An acid-labile biotin-hydrazone linker was developed for reversible dexamethasone loading onto ANANAS. The biodistribution, pharmacokinetics and efficacy of free and ANANAS-linked dexamethasone (ANANAS-Hz-Dex) in healthy and AIH mice were investigated upon intraperitoneal administration. In ANANAS-treated animals, the free drug was detected only in the liver. Super-resolution microscopy showed that nanoparticles segregate inside lysosomes of liver immunocompetent cells, mainly involved in AIH progression. In agreement with these observational results, chronic low-dose treatment with ANANAS-Hz-Dex reduced the expression of liver inflammation markers and, in contrast to the free drug, also the levels of circulating AIH-specific autoantibodies. These data suggest that the ANANAS carrier attenuates AIH-related liver damage without drug accumulation in off-site tissues. The safety and biodegradability of the ANANAS carrier make this formulation a promising tool for the treatment of autoimmune liver disorders.


Asunto(s)
Antiinflamatorios/administración & dosificación , Avidina/química , Dexametasona/administración & dosificación , Sistemas de Liberación de Medicamentos , Hepatitis Autoinmune/tratamiento farmacológico , Ácidos Nucleicos/química , Animales , Antiinflamatorios/uso terapéutico , Dexametasona/uso terapéutico , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA