RESUMEN
Covalent tRNA modifications play multi-faceted roles in tRNA stability, folding, and recognition, as well as the rate and fidelity of translation, and other cellular processes such as growth, development, and stress responses. Mutations in genes that are known to regulate tRNA modifications lead to a wide array of phenotypes and diseases including numerous cognitive and neurodevelopmental disorders, highlighting the critical role of tRNA modification in human disease. One such gene, THUMPD1, is involved in regulating tRNA N4-acetylcytidine modification (ac4C), and recently was proposed as a candidate gene for autosomal-recessive intellectual disability. Here, we present 13 individuals from 8 families who harbor rare loss-of-function variants in THUMPD1. Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism, and ophthalmological abnormalities. We demonstrate that the bi-allelic variants identified cause loss of function of THUMPD1 and that this defect results in a loss of ac4C modification in small RNAs, and of individually purified tRNA-Ser-CGA. We further corroborate this effect by showing a loss of tRNA acetylation in two CRISPR-Cas9-generated THUMPD1 KO cell lines. In addition, we also show the resultant amino acid substitution that occurs in a missense THUMPD1 allele identified in an individual with compound heterozygous variants results in a marked decrease in THUMPD1 stability and RNA-binding capacity. Taken together, these results suggest that the lack of tRNA acetylation due to THUMPD1 loss of function results in a syndromic form of intellectual disability associated with developmental delay, behavioral abnormalities, hearing loss, and facial dysmorphism.
Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Proteínas de Unión al ARN , Acetilación , Alelos , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Mutación/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , ARN/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismoRESUMEN
Paeonia is recognized globally due to its ornamental value. However, the mechanisms behind the formation of distinct levels of lignification in Paeonia stems remain largely unknown. In this study, we selected three representative Paeonia species, namely P. ostii (shrub), P. lactiflora (herb), and P. × 'Hexie' (semi-shrub), to evaluate and contrast their respective anatomical structure, phytochemical composition and transcriptomic profile. Our results showed that the degree of lignin deposition on the cell wall, along with the total amount of lignin and its monomers (especially G-lignin) were higher in P. ostii stems compared to the other two species at almost all development stages except 80 days after flowering. Furthermore, we estimated a total number of unigenes of 60,238 in P. ostii, 43,563 in P. × 'Hexie', and 40,212 in P. lactiflora from stem transcriptome. We then built a co-expression network of 25 transcription factors and 21 enzyme genes involved in lignin biosynthesis and identified nine key candidate genes. The expression patterns of these genes were positively correlated with the transcription levels of PAL, C4H, 4CL2, CCR, and COMT, as well as lignin content. Moreover, the highest relative expression levels of CCR, 4CL2, and C4H were found in P. ostii. This study provides an explanation for the observed differences in lignification between woody and herbaceous Paeonia stems, and constitutes a novel reference for molecular studies of stem-specific lignification process and lignin biosynthesis that can impact the ornamental industry.
Asunto(s)
Paeonia , Pared Celular/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Lignina/metabolismo , Paeonia/genética , Paeonia/metabolismo , Transcriptoma/genéticaRESUMEN
Chalcone synthase (CHS) is the key enzyme in the flavonoid biosynthetic pathway and has been studied in many plants, but the function of the CHS gene has not been well characterized in Paeonia ostii. In this study, we obtained a CHS homolog gene from P. ostii, which possessed the putative conserved amino acids of chalcone synthase by multiple alignment analysis and demonstrated the highest expression in developing seeds. In vitro assays of the recombinant PoCHS protein confirmed enzymatic activity using malonyl-CoA and 4-coumaroyl-CoA as substrates, and the optimal pH and reaction temperature were 7.5 and 40 °C, respectively. Furthermore, ectopic over-expression of PoCHS in Arabidopsis up-regulated the expression levels of genes involved in seed development (ABI), glycolysis (PKp2, PDH-E1a, and SUS2/3), and especially fatty acid biosynthesis (BCCP2, CAC2, CDS2, FatA, and FAD3). This resulted in an increased unsaturated fatty acid content, especially α-linolenic acid, in transgenic Arabidopsis seeds. In this study, we examined the functions of CHS homolog of P. ostii and demonstrated its new function in seed fatty acid biosynthesis.
Asunto(s)
Arabidopsis , Paeonia , Arabidopsis/genética , Vías Biosintéticas/genética , Ácidos Grasos , Paeonia/genética , Semillas/genéticaRESUMEN
Objective: To study the correlation between chemical component content and grades of Cistanche deserticola,and then to determine the optimum steaming time of different grades of Cistanche deserticola. Methods: Morphological indexes of postharvest stems of Cistanche deserticola were analyzed by principal component analysis and K-mean cluster analysis to determine a grading standard. Concentrations of phenylethanoid glycosides,polysaccharides,dilute ethanol-soluble extracts and total ashes in dried stems of Cistanche deserticola were determined using high performance liquid chromatography and ultraviolet spectrophotometer. Results: There was no significant relationship between grades and chemical component content. The effect of steaming time was stronger than that of grades on chemical component content. Moreover, the optimum steaming time of grade â was 30 min,of grade â ¡ and â ¢ were both 20 min. Conclusion: It is suggested that postharvest Cistanche deserticola should be divided into three grades and steamed for a certain time.
Asunto(s)
Cistanche , Cromatografía Líquida de Alta Presión , Glicósidos , Extractos Vegetales , Polisacáridos , VaporRESUMEN
To determine the genetic diversity of Haloxylon ammodendron collected from 14 sites in 5 provinces, 103 H. ammodendron samples of 12 wild populations and 2 cultivated which collected from 14 sites in 5 provinces were analyzed by amplified fragment length polymorphism (AFLP) DNA markers. PopGen32 and NTSYSpc2.1 was applied to evaluate genetic diversity of H. ammodendron populations. The average percentage of polymorphic loci (PPL) of total H. ammodendron populations was 94.13%, the average Nei's gene diversity index (H(e)) from 14 populations was 0.308 0, and the Shannon's genetic diversity index (I) was 0.467 6. The results indicated that the genetic diversity of H. ammodendron populations was high. Genetic differentiation index (G(st)) was 0.313 8, and the gene flow (N(m)) was 1.093 5 at the population level. The level of gene flow of H. ammodendron showed it possessed the feature of wind-pollinated outcrossing plants. AMOVA analysis indicated that genetic variation of H. ammodendron was much higher within groups (89.34%) than that among groups (10.66%), moreover genetic variation within groups mainly occurred among populations in different producing areas (84.80%). Cluster analysis (UPGMA) was applied to generate dendrogram based on Nei's genetic distances of 14 populations. Samples from Xinjiang and Qinghai were clustered respectively as a clade for their distant genetic relationship, while Samples from Gansu, Inner Mongolia and Ningxia were clustered together for their close genetic relationship. Genetic diversity of H. ammodendron populations is high in China, and genetic differentiation among regions is small, thus abundance within this specie is high at this stage. Therefore, wild nursery and artificial cultivating in different areas are effective measures for the conservation and sustainable utilization of H. ammodendron resources.
Asunto(s)
Amaranthaceae/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Variación Genética , China , Evolución Molecular , FilogeniaRESUMEN
BACKGROUND: Cancer cachexia-induced skeletal muscle fibrosis (SMF) impairs muscle regeneration, alters the muscle structure and function, reduces the efficacy of anticancer drugs, diminishes the patient's quality of life and shortens overall survival. RUNX family transcription factor 2 (Runx2), a transcription factor, and collagen type I alpha 1 chain (COL1A1), the principal constituent of SMF, have been linked previously, with Runx2 shown to directly modulate COL1A1 mRNA levels. l-Carnitine, a marker of cancer cachexia, can alleviate fibrosis in liver and kidney models; however, its role in cancer cachexia-associated fibrosis and the involvement of Runx2 in the process remain unexplored. METHODS: Female C57 mice (48 weeks old) were inoculated subcutaneously with MC38 cells to establish a cancer cachexia model. A 5 mg/kg dose of l-carnitine or an equivalent volume of water was administered for 14 days via oral gavage, followed by assessments of muscle function (grip strength) and fibrosis. To elucidate the interplay between the deltex E3 ubiquitin ligase 3L(DTX3L)/Runx2/COL1A1 axis and fibrosis in transforming growth factor beta 1-stimulated NIH/3T3 cells, a suite of molecular techniques, including quantitative real-time PCR, western blot analysis, co-immunoprecipitation, molecular docking, immunofluorescence and Duolink assays, were used. The relevance of the DTX3L/Runx2/COL1A1 axis in the gastrocnemius was also explored in the in vivo model. RESULTS: l-Carnitine supplementation reduced cancer cachexia-induced declines in grip strength (>88.2%, P < 0.05) and the collagen fibre area within the gastrocnemius (>57.9%, P < 0.05). At the 5 mg/kg dose, l-carnitine also suppressed COL1A1 and alpha-smooth muscle actin (α-SMA) protein expression, which are markers of SMF and myofibroblasts. Analyses of the TRRUST database indicated that Runx2 regulates both COL1A1 and COL1A2. In vitro, l-carnitine diminished Runx2 protein levels and promoted its ubiquitination. Overexpression of Runx2 abolished the effects of l-carnitine on COL1A1 and α-SMA. Co-immunoprecipitation, molecular docking, immunofluorescence and Duolink assays confirmed an interaction between DTX3L and Runx2, with l-carnitine enhancing this interaction to promote Runx2 ubiquitination. l-Carnitine supplementation restored DTX3L levels to those observed under non-cachectic conditions, both in vitro and in vivo. Knockdown of DTX3L abolished the effects of l-carnitine on Runx2, COL1A1 and α-SMA in vitro. The expression of DTX3L was negatively correlated with the levels of Runx2 and COL1A1 in untreated NIH/3T3 cells. CONCLUSIONS: This study revealed a previously unrecognized link between Runx2 and DTX3L in SMF and demonstrated that l-carnitine exerted a significant therapeutic impact on cancer cachexia-associated SMF, potentially through the upregulation of DTX3L.
Asunto(s)
Caquexia , Carnitina , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Músculo Esquelético , Animales , Femenino , Humanos , Ratones , Caquexia/etiología , Caquexia/tratamiento farmacológico , Caquexia/metabolismo , Carnitina/farmacología , Carnitina/metabolismo , Carnitina/uso terapéutico , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Obesity-related hypertension (OH) is accompanied by obvious endothelial dysfunction, which contributes to increased peripheral vascular resistance and hypertension. Adrenomedullin (ADM), a multifunctional active peptide, is elevated in obese humans. The OH rats induced by high fat diet (HFD) for 28 weeks and the human umbilical vein endothelial cells (HUVECs)-treated by palmitic acid (PA) were used to investigate the effects of ADM on endothelial dysfunction and the underlying mechanisms. Vascular reactivity was assessed using mesenteric arteriole rings, and the protein expression levels were examined by Western blot analysis. Compared with the control rats, OH rats exhibited hypertension and endothelial dysfunction, along with reduced eNOS protein expression and Akt activation, and increased protein expression of proinflammatory cytokines and ROS levels. Four-week ADM administration improved hypertension and endothelial function, increased eNOS protein expression and Akt activation, and attenuated endothelial inflammation and oxidative stress in OH rats. In vitro experiment, the antagonism of ADM receptors with ADM22-52 and the suppression of Akt signaling with A6730 significantly blocked ADM-caused increase of NO content and activation of eNOS and Akt, and inhibited the anti-inflammatory and anti-oxidant effect of ADM in PA-stimulated HUVECs. These data indicate that endothelial dysfunction in OH rats is partially attributable to the decreased NO level, and the increased inflammation and oxidative stress. ADM improves endothelial function and exerts hypotensive effect depending on the increase of NO, and its anti-inflammatory and anti-oxidant effect via receptor-Akt pathway.
Asunto(s)
Adrenomedulina , Endotelio Vascular , Células Endoteliales de la Vena Umbilical Humana , Hipertensión , Óxido Nítrico Sintasa de Tipo III , Obesidad , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Transducción de Señal , Animales , Adrenomedulina/farmacología , Adrenomedulina/metabolismo , Masculino , Obesidad/complicaciones , Obesidad/metabolismo , Hipertensión/metabolismo , Hipertensión/fisiopatología , Ratas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Humanos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Endotelio Vascular/metabolismo , Transducción de Señal/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Dieta Alta en Grasa/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Receptores de Adrenomedulina/metabolismo , Fragmentos de PéptidosRESUMEN
Dwarfing is one of the common phenotypic variations in asexually reproduced progeny of banana, and dwarfed banana is not only windproof and anti-fallout but also effective in increasing acreage yield. As a key gene in the strigolactone signalling pathway, DWARF53 (D53) plays an important role in the regulation of the height of plants. In order to gain insight into the function of the banana D53 gene, this study conducted genome-wide identification of banana D53 gene based on the M. acuminata, M. balbisiana and M. itinerans genome database. Analysis of MaD53 gene expression under high temperature, low temperature and osmotic stress based on transcriptome data and RT-qPCR was used to analyse MaD53 gene expression in different tissues as well as in different concentrations of GA and SL treatments. In this study, we identified three MaD53, three MbD53 and two MiD53 genes in banana. Phylogenetic tree analysis showed that D53 Musa are equally related to D53 Asparagales and Poales. Both high and low-temperature stresses substantially reduced the expression of the MaD53 gene, but osmotic stress treatments had less effect on the expression of the MaD53 gene. GR24 treatment did not significantly promote the height of the banana, but the expression of the MaD53 gene was significantly reduced in roots and leaves. GA treatment at 100 mg/L significantly promoted the expression of the MaD53 gene in roots, but the expression of this gene was significantly reduced in leaves. In this study, we concluded that MaD53 responds to GA and SL treatments, but "Yinniaijiao" dwarf banana may not be sensitive to GA and SL.
RESUMEN
Photothermal immunotherapy has shown great promise in the treatment of tumor metastasis. However, the thermal resistance of tumor cells substantially compromises the treatment effect of photothermal immunotherapy. Herein, a high-performance organic pyroelectric nanoplatform, tBu-TPAD-BF2 nanoparticles (NPs), is rationally engineered for the effective pyroelectroimmunotherapy of tumor metastasis. Biocompatible tBu-TPAD-BF2 NPs with excellent pyroelectric and photothermal conversion properties are constructed by assembling organic, low-bandgap pyroelectric molecules with amphiphilic polymers. After internalization by tumor cells, treatment with tBu-TPAD-BF2 NPs causes an apparent temperature elevation upon near-infrared (NIR) laser irradiation, inducing potent immunogenic cell death (ICD). Additionally, the temperature variations under alternating NIR laser irradiation facilitate reactive oxygen species production for pyroelectric therapy, thus promoting ICD activation and lowering thermal resistance. Importantly, in vivo assessments illustrate that tBu-TPAD-BF2 NPs in combination with NIR laser exposure notably inhibit primary and distant tumor proliferation and prominently retarded lung metastasis. RNA profiling reveals that treatment with tBu-TPAD-BF2 NPs markedly suppresses metastasis under NIR laser illumination by downregulating metastasis-related genes and upregulating immune response-associated pathways. Therefore, this study provides a strategy for designing high-performance pyroelectric nanoplatforms to effectively cure tumor metastasis, thereby overcoming the inherent shortcomings of photothermal immunotherapy.
Asunto(s)
Inmunoterapia , Nanopartículas , Animales , Ratones , Nanopartículas/química , Línea Celular Tumoral , Terapia Fototérmica , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Pulmonares/terapia , Rayos InfrarrojosRESUMEN
Introduction During the SARS-CoV-2 pandemic, rumors claimed that alcohol drinking could someway be useful in contrasting the contagion and even the disease. It appears opportune to bring some robust data to determine whether heavy alcohol drinkers and non-drinkers experienced different infection rates. Methods A cross-sectional study through a simple survey based on the social media software Weixin and the mini survey program Wenjuanxing was carried out in China after the zero-Covid policy ended, namely from 15:00 January 1, 2023, to 12:35 January 3, 2023. The evaluation was conducted among subjects belonging to the first author's Weixin community, mostly residents in the higher populated China area. Study participants received a questionary and were asked about their virus infection status, and were classified into two groups: (a) infected, meaning he/she has been infected at least once (whether recovered or not); (b) remain uninfected, meaning the virus has not infected him/her. A total of 211 subjects adhered to the survey. Alcoholic drinking behavior about liquors with no less than 40% alcohol content in volume was retrieved from the participants. In China, such beverages are almost uniquely referred to as the Chinese Spirits or BaiJiu. The frequency of drinking quantified the drinking behavior, and it is classified into three groups: never drink or drink occasionally (group A); drink one or two times per week (group B); drink three times per week or more often (group C). The hypothesis of an existing relationship between infection status and drinking behavior was advanced before data collection. The numbers of the uninfected people in each of the three drinking groups were counted, and the rates of not-infection were calculated. The rates are compared with each other to conclude whether significant differences exist, considering the size of the samples. The conclusion is drawn from standard hypothesis testing. Results The male/female ratio was 108/103 (51.2% and 48.8%), the mean age was 38.8 years (range 21-68), and the median age of 37.4 years. The total 211 participants fell into three groups with different drinking frequencies, with counts (percentages in total 211 participants) 139 (65.9%) in group A, 28 (13.3%) in group B, and 44 (20.8%) in group C. The number (percentage within the group) of uninfected members in groups A, B, and C are 29 (20.9%), 7 (25.0%), and 17 (38.6%), respectively. The statistical analysis through the Cochran-Armitage trend test gave a significative result: p=0.0209. Conclusions Within the methodology's limitations, this study shows the significant relationship between alcohol drinking habits and the chances of avoiding SARS-CoV-2 infection. A possible hypothesis explaining these findings is advanced. However, the authors warn about misleading conclusions and advocate research that could properly guide ethanol use in the present and other possible pandemics. Limitations This study is based on self-reported data from a specific community in China. There could be recall bias and social desirability bias, and the generalizability of the ï¬ndings to other populations could be limited. Other factors that could influence infection rates, such as age, occupation, and health status, are not controlled in the present study. There could be other explanations for the observed relationship between alcohol drinking habits and infection rates.
RESUMEN
Introduction: Cultivated banana are polyploid, with low pollen fertility, and most cultivars are male sterile, which leads to difficulties in banana breeding research. The selection of male parent with excellent resistance and pollen fertility is therefore essential for banana breeding. Wild banana (Musa itinerans) have developed many good characteristics during natural selection and constitute an excellent gene pool for breeding. Therefore, research on wild banana breeding is very important for banana breeding. Results: In the current analysis, we examined the changes in viability of wild banana pollens at different temperatures by in vitro germination, and found that the germination ability of wild banana pollens cultured at 28°C for 2 days was higher than that of pollens cultured at 23°C (pollens that could not germinate normally under low temperature stress), 24°C (cultured at a constant temperature for 2 days) and 32°C (cultured at a constant temperature for 2 days). To elucidate the molecular mechanisms underlying the germination restoration process in wild banana pollens, we selected the wild banana pollens that had lost its germination ability under low temperature stress (23°C) as the control group (CK) and the wild banana pollens that had recovered its germination ability under constant temperature incubation of 28°C for 2 days as the treatment group (T) for transcriptome sequencing. A total of 921 differentially expressed genes (DEGs) were detected in CK vs T, of which 265 were up-regulated and 656 were down-regulated. The combined analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the activation, metabolism of various substances (lipids, sugars, amino acids) play a major role in restoring pollen germination capacity. TCA cycle and the sesquiterpenoid and triterpenoid biosynthetic pathways were also significantly enriched in the KEGG pathway. And we found that some DEGs may be associated with pollen wall formation, DNA methylation and DNA repair. The cysteine content, free fatty acid (FFA) content, H2O2 content, fructose content, and sucrose content of pollen were increased at treatment of 28°C, while D-Golactose content was decreased. Finally, the GO pathway was enriched for a total of 24 DEGs related to pollen germination, of which 16 DEGs received targeted regulation by 14 MYBs. Discussions: Our study suggests that the balance between various metabolic processes, pollen wall remodelling, DNA methylation, DNA repairs and regulation of MYBs are essential for germination of wild banana pollens.
RESUMEN
Precise trap and manipulation of individual cells is a prerequisite for single-cell analysis, which has a wide range of applications in biology, chemistry, medicine, and materials. Herein, a microfluidic trapping system with a 3D electrode based on AC dielectrophoresis (DEP) technology is proposed, which can achieve the precise trapping and release of specific microparticles. The 3D electrode consists of four rectangular stereoscopic electrodes with an acute angle near the trapping chamber. It is made of Ag-PDMS material, and is the same height as the channel, which ensures the uniform DEP force will be received in the whole channel space, ensuring a better trapping effect can be achieved. The numerical simulation was conducted in terms of electrode height, angle, and channel width. Based on the simulation results, an optimal chip structure was obtained. Then, the polystyrene particles with different diameters were used as the samples to verify the effectiveness of the designed trapping system. The findings of this research will contribute to the application of cell trapping and manipulation, as well as single-cell analysis.
RESUMEN
Introduction: GRAS, named after GAI, RGA, and SCR, is a class of plant-specific transcription factors family that plays a crucial role in growth and development, signal transduction, and various stress responses. Methods: To understand the biological functions of the banana GRAS gene family, a genome-wide identification and bioinformatics analysis of the banana GRAS gene family was performed based on information from the M. acuminata, M. balbisiana, and M. itinerans genomic databases. Result: In the present study, we identified 73 MaGRAS, 59 MbGRAS, and 58 MiGRAS genes in bananas at the whole-genome scale, and 56 homologous genes were identified in the three banana genomes. Banana GRASs can be classified into 10 subfamilies, and their gene structures revealed that most banana GRAS gDNAs lack introns. The promoter sequences of GRASs had a large number of cis-acting elements related to plant growth and development, phytohormone, and adversity stress responsiveness. The expression pattern of seven key members of MaGRAS response to low-temperature stress and different tissues was also examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The microRNAs-MaGRASs target prediction showed perfect complementarity of seven GRAS genes with the five mac-miRNAs. The expression of all seven genes was lowest in roots, and the expression of five genes was highest in leaves during low-temperature stress. The expression of MaSCL27-2, MaSCL27-3, and MaSCL6-1 was significantly lower under low-temperature stress compared to the control, except for MaSCL27-2, which was slightly higher than the 28°C control at 4 h. The expression of MaSCL27-2, MaSCL27-3, and MaSCL6-1 dropped to the lowest levels at 24 h, 12 h, and 4 h, respectively. The MaSCL27-4 and MaSCL6-2 expression was intermittently upregulated, rising to the highest expression at 24h, while the expression of MaSCL22 was less variable, remaining at the control level with small changes. Discussion: In summary, it is tentatively hypothesized that the GRAS family has an important function in low-temperature stress in bananas. This study provides a theoretical basis for further analyzing the function of the banana GRAS gene and the resistance of bananas to cold temperatures.
RESUMEN
Cistanche Herba is one of precious traditional Chinese medicine, which original wild plant resources dropped sharply in recent years. It is urgent to make sustainable utilization. The genus of Cistanche is a total parasitic plant, its physiological ecology and nutrition transfer are very particular. The status of the studies on habitat characteristics, parasitic mechanism and nutrient transport of Cistanche was reviewed, prospect was also given. It can provide reference for the further basic and applied studies on the nutrition transfer, germplasm quality and agriculture practice.
Asunto(s)
Cistanche/metabolismo , Cistanche/parasitología , Ecosistema , Agricultura , Transporte Biológico , Medicina Tradicional ChinaRESUMEN
OBJECTIVE: To study the volatile compounds from inflorescence of Cistanche deserticola and provide basis for its utilization and seed breeding. METHODS: The volatile compounds were collected by dynamic headspace adsorption and analyzed by gas chromatography-mass spectrometry (GC-MS). RESULTS: Forty volatile components were identified in inflorescence of Cistanche deserticola from squaring period to full-bloom period. The main components in buds of Cistanche deserticola were hydrocarbons and green leaf volatiles in squaring period. Some components were characteristic in buds and disappeared or decreased in flowers. The relative contents of some components gradually increased with the buds blooming. And some components only emerged in flowers of Cistanche deserticola. The higher content of esters and aromatics were found in flowers, which were significantly increased in comparison with the volatile compounds from buds. CONCLUSION: The volatile compounds from inflorescence of Cistanche deserticola were complex, consisting of various compositions and significantly different with buds blooming.
Asunto(s)
Cistanche/química , Flores/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Adsorción , Cistanche/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Estaciones del Año , Factores de Tiempo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/aislamiento & purificaciónRESUMEN
In this paper, we first develop the projective truncation approximation (PTA) in the Green's function equation of motion (EOM) formalism for classical statistical models. To implement PTA for a given Hamiltonian, we choose a set of basis variables and projectively truncate the hierarchical EOM. We apply PTA to the one-dimensional Ï^{4} lattice model. Phonon dispersion and static correlation functions are studied in detail. Using one- and two-dimensional bases, we obtain results identical to and beyond the quadratic variational approximation, respectively. In particular, we analyze the power-law temperature dependence of the static averages in the low- and high-temperature limits, and we give exact exponents.
RESUMEN
In industry, sensor-based monitoring of equipment or environment has become a necessity. Instead of using a single sensor, multi-sensor system is used to fully detect abnormalities in complex scenarios. Recently, physical models, signal processing technology, and various machine learning models have improved the performance. However, these methods either do not consider the potential correlation between features or do not take advantage of the sequential changes of correlation while constructing an anomaly detection model. This paper firstly analyzes the correlation characteristic of a multi-sensor system, which shows a lot of clues to the anomaly/fault propagation. Then, a multi-sensor anomaly detection method, which finds and uses the correlation between features contained in the multidimensional time-series data, is proposed. The method converts the multidimensional time-series data into temporal correlation graphs according to time window. By transforming time-series data into graph structure, the task of anomaly detection is considered as a graph classification problem. Moreover, based on the stability and dynamics of the correlation between features, a structure-sensitive graph neural network is used to establish the anomaly detection model, which is used to discover anomalies from multi-sensor system. Experiments on three real-world industrial multi-sensor systems with anomalies indicate that the method obtained better performance than baseline methods, with the mean value of F1 score reaching more than 0.90 and the mean value of AUC score reaching more than 0.95. That is, the method can effectively detect anomalies of multidimensional time series.
Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador , Factores de TiempoRESUMEN
Human immunodeficiency virus-associated neurological disease (HAND) still causes significant morbidity, despite success reducing viral loads with combination antiretroviral therapy. The dopamine (DA) system is particularly vulnerable in HAND. We hypothesize that early, "reversible" DAergic synaptic dysfunction occurs long before DAergic neuron loss. As such, aging human immunodeficiency virus (HIV)-infected individuals may be vulnerable to other age-related neurodegenerative diseases like Parkinson's disease (PD), underscoring the need to understand shared molecular targets in HAND and PD. Previously, we reported that the neurotoxic HIV-1 transactivating factor (Tat) acutely disrupts mitochondrial and endoplasmic reticulum calcium homeostasis via ryanodine receptor (RyR) activation. Here, we further report that Tat disrupts DA transporter (DAT) activity and function, resulting in increased plasma membrane (PM) DAT and increased DAT V(max), without changes in K(m) or total DAT protein. Tat also increases calpain protease activity at the PM, demonstrated by total internal reflection fluorescence microscopy of a cleavable fluorescent calpain substrate. Tat-increased PM DAT and calpain activity are blocked by the RyR antagonists ryanodine and dantrolene, the calpain inhibitor calpastatin, and by a specific inhibitor of GSK-3ß. We conclude that Tat activates RyRs via a calcium- and calpain-mediated mechanism that upregulates DAT trafficking to the PM, and is independent of DAT protein synthesis, reinforcing the feasibility of RyR and GSK-3ß inhibition as clinical therapeutic approaches for HAND. Finally, we provide key translational relevance for these findings by highlighting published human data of increased DAT levels in striata of HAND patients and by demonstrating similar findings in Tat-expressing transgenic mice.
Asunto(s)
Calpaína/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Péptido Hidrolasas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/farmacología , Complejo SIDA Demencia/enzimología , Complejo SIDA Demencia/patología , Animales , Western Blotting , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/fisiología , Glucógeno Sintasa Quinasa 3 beta , Cinética , Mesencéfalo/citología , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Neuronas/metabolismo , Células PC12 , Inhibidores de Proteasas/farmacología , Ratas , Fracciones Subcelulares/fisiologíaRESUMEN
OBJECTIVE: To investigate the changes in reactive oxygen species (ROS) and dimethyl- arginine dimethylaminohydrolase-asymmetric dimethylarginine (DDAH-ADMA) system in the process of endothelial cell senescence after exposure to high glucose. METHODS: The human umbilical vein endothelial cells (HUVECs) were cultured with different concentrations of glucose, e.g. 5.5 mmol/L (normal level), and high levels as 11.0, 22.0 and 33.0 mmol/L, for 48 hours, respectively. Subsequently, SA-ß-gal staining was used to evaluate senescence of cells. Telomerase activity was detected by polymerase chain reaction-enzyme linked immunosorbent assay (PCR-ELISA). The intracellular ROS level was measured by flow cytometry. The ADMA concentration and DDAH activity were determined with high-performance liquid chromatography. RESULTS: Compared with normal glucose concentration group, after the endothelial cells were treated with high glucose concentration (11.0-33.0 mmol/L) for 48 hours, the number of SA-ß-gal positive cells was increased significantly [(7.00±1.73)%, (12.67±2.03)%, (16.00±2.26)% vs. (4.00±1.33)%, P>0.05, P<0.05, P<0.05] and the telomerase activity was inhibited dramatically [(91.32±4.01)%, (78.44±3.78)%, (56.04±3.35)% vs. 100%, all P<0.05]. The ROS level (mfi) was increased in all high glucose groups (159.84±27.52, 188.99±18.77, 244.56±20.96 vs.117.11±18.76, P<0.05 or P<0.01). At the same time, the ADMA (µmol/L) production was increas ed (0.78±0.14, 0.88±0.18, 1.08±0.15 vs. 0.70±0.12, P>0.05, P<0.05, P<0.05), and DDAH activity was decreased [(91.32±4.01)%, (78.44±3.78)%, (56.04±3.35)% vs.100%, all P<0.05]. CONCLUSION: High glucose can accelerate endothelial cells senescence in dose-dependent manner and the underlying mechanism may be related to an increased oxidative stress and change in DDAH-ADMA system.
Asunto(s)
Amidohidrolasas/metabolismo , Senescencia Celular/efectos de los fármacos , Glucosa/efectos adversos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Arginina/análogos & derivados , Arginina/metabolismo , Células Cultivadas , Humanos , Óxido Nítrico Sintasa/metabolismo , Estrés OxidativoRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia plants have been widely used as traditional Chinese medicinal materials for more than 2,000 years in the treatment of cardiovascular, extravasated blood and female genital diseases; paeoniflorin and paeonol have been implicated as the plants' primary active ingredients. AIM OF THE STUDY: Previous studies have been singularly focused on the chemical constituents and content variation of the Paeonia roots in the advancement of traditional Chinese medicine, with the plants' stems and leaves considered useless. This study aims to explore the chemical constituents, content variation, and antioxidant capacity in Paeonia stems and leaves for the future utilization of traditional Chinese medicine, given that current practices of digging and trade endanger Paeonia in the wild. MATERIALS AND METHODS: Herein, secondary metabolites from the stems and leaves from six developmental stages of the annual growth cycle of Paeonia ostii T. Hong & J. X. Zhang, P. 'Hexie', and P. lactiflora Pall. were qualitatively and quantitatively analyzed via high-performance liquid chromatography with a diode array detector (HPLC-DAD) and high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). Antioxidant capacity at each stage was also evaluated by various free radical scavenging assays. RESULTS: A total of 24 metabolites were detected and identified, including 5 monoterpene glycosides, 4 tannins, 5 phenols, 9 flavonoids, and paeonol. Excepting paeonol and the phenols, the levels of each metabolite category were significantly higher in the leaves than the stems during all developmental stages. The paeoniflorin content in the P. ostii leaves was the highest during the first developmental stage and higher than the standards of the Chinese Pharmacopoeia, suggesting it to be the optimal harvesting stage for medicinal uses. Notably, the antioxidant capacity of the leaves was significantly greater than in the stems, particularly for the leaves of P. 'Hexie'. CONCLUSION: Our study indicates that the leaves of P. 'Hexie' have the potential to be a worthy medicinal substitute to Paeonia roots due to their high monoterpene glycosides, phenols, and flavonoids as well as their strong antioxidant capacity. Further, this study provides a theoretical basis for the development and utilization of non-root Paeonia plant sections as medicinal plant resources.