Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35576940

RESUMEN

Exploring novel hypergolic fuels for modern space propulsion is highly desired. However, the analysis and understanding of the structure and hypergolic performance at the molecular level are still insufficient. To understand the factors that dictate hypergolicity, we conducted a comparative study on a series of metal-organic frameworks (MOFs) characterized by the same topology but with varied ligand structures. The ignition delay (ID) time trend was found to be imidazole < triazole < tetrazole, and the rapid ID time was 8 ms. By combining experimental studies and density functional theory (DFT) calculations, we found that propargyl and cyanoborohydride groups that functioned as dual hypergolic triggers contributed to the hypergolicity, and a distinct electronic structure was detrimental to ID time. The structure-performance relationships presented herein can potentially provide some fundamental insights into the field of developing high-performance hypergolic fuels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA