Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Insect Sci ; 20(3)2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32458990

RESUMEN

Survival and parasitism activity of Trichopria drosophilae Perkins adults, a cosmopolitan parasitoid of Drosophila spp., were studied under laboratory conditions using five constant temperatures at the lower range known for this enemy, from 4 to 20°C in 4°C increments. Drosophila suzukii Matsumura, an invasive pest of small fruits, was used as a host. Commercially available adult parasitoids were provided with 1) food and D. suzukii pupae; 2) food and no D. suzukii pupae; 3) no food and no pupae. The results show that adult females of T. drosophilae lived longer than males, and both generally benefitted from food supply. The highest level of survival was observed between 8 and 12°C for fed insects, irrespective of whether they were offered host pupae or not. The absence of food led to the highest mortality, but the parasitoid demonstrated considerably resistance to prolonged starvation. Successful parasitism increased steadily with temperature and reached the highest value at 20°C. Conversely, D. suzukii emergence rate was high after exposure of pupae to parasitoids at 4°C, while pupal mortality increased strongly with temperature until 12°C. The findings indicate that T. drosophilae is well adapted to the relatively cold conditions experienced in early spring and in autumn or at high elevations, when the host pupae could be largely available. The long lifespan of the adults and the ability to parasitize the host at low temperature make T. drosophilae potentially useful for the biocontrol of D. suzukii.


Asunto(s)
Drosophila/parasitología , Interacciones Huésped-Parásitos , Control de Insectos , Control Biológico de Vectores , Avispas/fisiología , Animales , Frío , Drosophila/crecimiento & desarrollo , Femenino , Masculino , Pupa/crecimiento & desarrollo , Pupa/parasitología , Estaciones del Año , Factores Sexuales , Avispas/crecimiento & desarrollo
2.
J Therm Biol ; 75: 62-68, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30017053

RESUMEN

Drosophila suzukii (Matsumura, 1931) is a highly successful invasive dipteran which represents a serious threat for global fruit industry. Among other adaptive traits, D. suzukii owes its success to the derived morphological features of its ovipositor, which allows the insect to exploit the exclusive ecological niche of fresh fruit, thus avoiding competition with other closely related species. With the aim of investigating temperature-induced phenotypic plasticity of D. suzukii ovipositor, we reared this insect in four different laboratory conditions, represented by the combination of two developmental temperatures and two diet regimes for the larvae. We recorded the effects of these two factors on ovipositor size and shape and overall body size through a combination of distance-based and geometric morphometric analyses. Results showed that insects attain the largest body sizes at lower temperature, whereas the diet does not determine significant difference in size. However, the effect on size of the two factors is less pronounced in the ovipositor, which shows a negative allometry with respect to body size in all treatments. At higher temperature, ovipositor shape tends also to co-vary with its own size. Neither temperature nor diet have significant effect on ovipositor bilateral fluctuating asymmetry. These results confirm the hypothesis that in D. suzukii the toughened valve of the ovipositor are subjected to effective morpho-functional constraints, while probably being under strong selection by reason of their mechanical role.


Asunto(s)
Drosophila/anatomía & histología , Oviposición , Temperatura , Animales , Tamaño Corporal , Femenino , Especies Introducidas , Larva , Fenotipo
3.
BMC Genet ; 18(1): 87, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29096606

RESUMEN

BACKGROUND: Drosophila suzukii is a highly destructive pest species, causing substantial economic losses in soft fruit production. To better understand migration patterns, gene flow and adaptation in invaded regions, we studied the genetic structure of D. suzukii collected across Italy, where it was first observed in 2008. In particular, we analysed 15 previously characterised Simple Sequence Repeat (SSR) markers to estimate genetic differentiation across the genome of 278 flies collected from nine populations. RESULTS: The nine populations showed high allelic diversity, mainly due to very high heterozygosity. The high Polymorphism Information Content (PIC) index values (ranging from 0.68 to 0.84) indicated good discrimination power for the markers. Negative fixation index (F IS) values in seven of the populations indicated a low level of inbreeding, as suggested by the high number of alleles. STRUCTURE, Principal Coordinate and Neighbour Joining analysis also revealed that the Sicilian population was fairly divergent compared to other Italian populations. Moreover, migration was present across all populations, with the exception of the Sicilian one, confirming its isolation relative to the mainland. CONCLUSIONS: This is the first study characterising the genetic structure of the invasive species D. suzukii in Italy. Our analysis showed extensive genetic homogeneity among D. suzukii collected in Italy. The relatively isolated Sicilian population suggests a largely human-mediated migration pattern, while the warm climate in this region allows the production of soft fruit, and the associated D. suzukii reproductive season occurring much earlier than on the rest of the peninsula.


Asunto(s)
Biología Computacional/métodos , Drosophila/genética , Variación Genética , Genética de Población , Repeticiones de Microsatélite , Análisis de Secuencia de ADN/métodos , Animales , Femenino , Especies Introducidas , Italia , Masculino , Filogenia
4.
Insects ; 12(8)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34442268

RESUMEN

The strawberry blossom weevil (SBW), Anthonomus rubi, is a well-documented pest of strawberry. Recently, in strawberry fields of Trento Province (north-east Italy), new noteworthy damage on fruit linked to SBW adults was observed, combined with a prolonged adult activity until the autumn. In this new scenario, we re-investigated SBW biology, ecology, monitoring tools, and potential control methods to develop Integrated Pest Management (IPM) strategies. Several trials were conducted on strawberry in the laboratory, field and semi-natural habitats. The feeding activity of adult SBW results in small deep holes on berries at different stages, causing yield losses of up to 60%. We observed a prolonged survival of newly emerged adults (>240 days) along with their ability to sever flower buds without laying eggs inside them in the same year (one generation per year). SBW adults were present in the strawberry field year-round, with movement between crop and no crop habitats, underlying a potential role of other host/feeding plants to support its populations. Yellow sticky traps combined with synthetic attractants proved promising for both adult monitoring and mass trapping. Regarding control, adhesive tapes and mass trapping using green bucket pheromone traps gave unsatisfactory results, while the high temperatures provided by the black fabric, the periodic removal of severed buds or adults and Chlorpyrifos-methyl application constrained population build-up. The findings are important for the development of an IPM strategy.

5.
Sci Rep ; 10(1): 10245, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581287

RESUMEN

Grapevine is a well-known host plant of the invasive pest Drosophila suzukii, but its susceptibility to pest oviposition and development greatly depends on the cultivar. To address environmental sustainability during viticultural zoning planning, new vineyard plantation and Integrated Pest Management programmes, it is essential to take pest pressure and cultivar susceptibility into account. To determine the different grapevine cultivars susceptibility to D. suzukii, we tested twelve widely spread cultivars during the ripening period. We also tested three cultivars during the drying period for raisin wine production. The infestation and emergence rates were consequently related to chemical and texture features of the berries to explain the role of skin and pulp characteristics in determining the nature of the susceptibility. Our results showed that susceptibility to D. suzukii infestation varies across cultivars. On ripening grapes, infestation is primarily influenced by skin and pulp firmness, elasticity and consistency. Suitability for egg development resulted mainly related to skin and pulp deformation. In a drying loft, infestation may also occur in relation to skin and pulp consistency. Lastly, we discuss the practical implication of the underestimated role of berry texture in D. suzukii oviposition and emergence success, in both ripening and drying grapes.


Asunto(s)
Drosophila/patogenicidad , Vitis/crecimiento & desarrollo , Animales , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/parasitología , Desecación , Drosophila/fisiología , Femenino , Control de Insectos , Oviposición , Vitis/parasitología
6.
J Econ Entomol ; 111(3): 1306-1312, 2018 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-29659915

RESUMEN

Drosophila suzukii Matsumura (Diptera: Drosophilidae) is an invasive pest in Europe and is a major threat to the soft fruit industry. Because of an ample temperature range, the pest spans from low to high elevation crops in mountain areas of the Southern Alps. Starting from field observations on the variable efficacy of insecticides under different temperatures, experiments were designed to test the efficacy of chemical families of insecticides available against this pest. Pyrethroids and spynosins proved to be the most effective under all temperature conditions (14, 22, and 30°C) in all assays. Organophosphates and neonicotinoids showed significantly lower efficacy at low temperatures, indicating that they are not suitable to protect crops under those conditions. The management of the pest in cold habitats, which are suitable for the cultivation of high-quality berries as for example in mountain farming systems, is constrained by a limited number of molecules available for fruit protection. Temperature has to be considered among factors affecting the decision-making process for the choice of registered formulations to be used in pest control.


Asunto(s)
Drosophila , Frutas/crecimiento & desarrollo , Control de Insectos , Insecticidas , Temperatura , Animales , Productos Agrícolas/crecimiento & desarrollo , Drosophila/crecimiento & desarrollo , Italia , Larva/crecimiento & desarrollo
7.
J Pest Sci (2004) ; 89(3): 735-748, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28275324

RESUMEN

The invasive spotted wing drosophila Drosophila suzukii, a fruit fly of Asian origin, is a major pest of a wide variety of berry and stone fruits in Europe. One of the characteristics of this fly is its wide host range. A better knowledge of its host range outside cultivated areas is essential to develop sustainable integrated pest management strategies. Field surveys were carried out during two years in Italy, the Netherlands and Switzerland. Fruits of 165 potential host plant species were collected, including mostly wild and ornamental plants. Over 24,000 D. suzukii adults emerged from 84 plant species belonging to 19 families, 38 of which being non-native. Forty-two plants were reported for the first time as hosts of D. suzukii. The highest infestations were found in fruits of the genera Cornus, Prunus, Rubus, Sambucus and Vaccinium as well as in Ficus carica, Frangula alnus, Phytolacca americana and Taxus baccata. Based on these data, management methods are suggested. Ornamental and hedge plants in the vicinity of fruit crops and orchards can be selected according to their susceptibility to D. suzukii. However, the widespread availability and abundance of non-crop hosts and the lack of efficient native parasitoids suggest the need for an area-wide control approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA