Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 34(12)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36538812

RESUMEN

Discovery of structure-property relationships in thin film alloys of complex metal oxides enabled by high-throughput materials synthesis and characterization facilities is demonstrated here with a case-study. Thin films of binary transition metal oxides (Ti-Zn) are prepared by pulsed laser deposition with continuously varying Ti:Zn ratio, creating combinatorial samples for exploration of the properties of this material family. The atomic structure and electronic properties are probed by spatially resolved techniques including x-ray absorption near edge structures (XANES) and x-ray fluorescence (XRF) at the Ti and Zn K-edge, x-ray diffraction, and spectroscopic ellipsometry. The observed properties as a function of Ti:Zn ratio are resolved into mixtures of five distinguishable phases by deploying multivariate curve resolution analysis on the XANES spectral series, under constraints set by results from the other characterization techniques. First-principles computations based on density function theory connect the observed properties of each distinct phase with structural and spectral characteristics of crystalline polymorphs of Ti-Zn oxide. Continuous tuning of the optical absorption edge as a function of Ti:Zn ratio, including the unusual observation of negative optical bowing, exemplifies a functional property of the film correlated to the phase evolution.

2.
J Am Chem Soc ; 143(37): 15298-15308, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34499512

RESUMEN

To examine ion solvation, exchange, and speciation for minority components in molten salts (MS) typically found as corrosion products, we propose a multimodal approach combining extended X-ray absorption fine structure (EXAFS) spectroscopy, optical spectroscopy, ab initio molecular dynamics (AIMD) simulations, and rate theory of ion exchange. Going beyond conventional EXAFS analysis, our method can accurately quantify populations of different coordination states of ions with highly disordered coordination environments via linear combination fitting of the EXAFS spectra of these coordination states computed from AIMD to the experimental EXAFS spectrum. In a case study of dilute Ni(II) dissolved in the ZnCl2+KCl melts, our method reveals heterogeneous distributions of coordination states of Ni(II) that are sensitive to variations in temperature and melt composition. These results are fully explained by the difference in the chloride exchange dynamics at varied temperatures and melt compositions. This insight will enable a better understanding and control of ion solubility and transport in MS.

3.
Phys Rev Lett ; 124(15): 156401, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32357067

RESUMEN

Simulations of excited state properties, such as spectral functions, are often computationally expensive and therefore not suitable for high-throughput modeling. As a proof of principle, we demonstrate that graph-based neural networks can be used to predict the x-ray absorption near-edge structure spectra of molecules to quantitative accuracy. Specifically, the predicted spectra reproduce nearly all prominent peaks, with 90% of the predicted peak locations within 1 eV of the ground truth. Besides its own utility in spectral analysis and structure inference, our method can be combined with structure search algorithms to enable high-throughput spectrum sampling of the vast material configuration space, which opens up new pathways to material design and discovery.

4.
Phys Chem Chem Phys ; 22(40): 22900-22917, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32845262

RESUMEN

Molten salts are of great interest as alternative solvents, electrolytes, and heat transfer fluids in many emerging technologies. The macroscopic properties of molten salts are ultimately controlled by their structure and ion dynamics at the microscopic level and it is therefore vital to develop an understanding of these at the atomistic scale. Herein, we present high-energy X-ray scattering experiments combined with classical and ab initio molecular dynamics simulations to elucidate structural and dynamical correlations across the family of alkali-chlorides. Computed structure functions and transport properties are in reasonably good agreement with experiments providing confidence in our analysis of microscopic properties based on simulations. For these systems, we also survey different rate theory models of anion exchange dynamics in order to gain a more sophisticated understanding of the short-time correlations that are likely to influence transport properties such as conductivity. The anion exchange process occurs on the picoseconds time scale at 1100 K and the rate increases in the order KCl < NaCl < LiCl, which is in stark contrast to the ion pair dissociation trend in aqueous solutions. Consistent with the trend we observe for conductivity, the cationic size/mass, as well as other factors specific to each type of rate theory, appear to play important roles in the anion exchange rate trend.

5.
Nano Lett ; 19(6): 3457-3463, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31046292

RESUMEN

Due to its chemical stability, titania (TiO2) thin films increasingly have significant impact when applied as passivation layers. However, optimization of growth conditions, key to achieving essential film quality and effectiveness, is challenging in the few-nanometers thickness regime. Furthermore, the atomic-scale structure of the nominally amorphous titania coating layers, particularly when applied to nanostructured supports, is difficult to probe. In this Letter, the quality of titania layers grown on ZnO nanowires is optimized using specific strategies for processing of the nanowire cores prior to titania coating. The best approach, low-pressure O2 plasma treatment, results in significantly more-uniform titania films and a conformal coating. Characterization using X-ray absorption near edge structure (XANES) reveals the titania layer to be highly amorphous, with features in the Ti spectra significantly different from those observed for bulk TiO2 polymorphs. Analysis based on first-principles calculations suggests that the titania shell contains a substantial fraction of under-coordinated Ti4+ ions. The best match to the experimental XANES spectrum is achieved with a "glassy" TiO2 model that contains ∼50% of under-coordinated Ti4+ ions, in contrast to bulk crystalline TiO2 that only contains 6-coordinated Ti4+ ions in octahedral sites.

6.
J Am Chem Soc ; 139(46): 16591-16603, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29027465

RESUMEN

Zero-strain electrodes, such as spinel lithium titanate (Li4/3Ti5/3O4), are appealing for application in batteries due to their negligible volume change and extraordinary stability upon repeated charge/discharge cycles. On the other hand, this same property makes it challenging to probe their structural changes during the electrochemical reaction. Herein, we report in situ studies of lithiation-driven structural transformations in Li4/3Ti5/3O4 via a combination of X-ray absorption spectroscopy and ab initio calculations. Based on excellent agreement between computational and experimental spectra of Ti K-edge, we identified key spectral features as fingerprints for quantitative assessment of structural evolution at different length scales. Results from this study indicate that, despite the small variation in the crystal lattice during lithiation, pronounced structural transformations occur in Li4/3Ti5/3O4, both locally and globally, giving rise to a multi-stage kinetic process involving mixed quasi-solid solution/macroscopic two-phase transformations over a wide range of Li concentrations. This work highlights the unique capability of combining in situ core-level spectroscopy and first-principles calculations for probing Li-ion intercalation in zero-strain electrodes, which is crucial to designing high-performance electrode materials for long-life batteries.

7.
Nano Lett ; 16(11): 6816-6822, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27736081

RESUMEN

Perovskite oxides form an eclectic class of materials owing to their structural flexibility in accommodating cations of different sizes and valences. They host well-known point and planar defects, but so far no line defect has been identified other than dislocations. Using analytical scanning transmission electron microscopy (STEM) and ab initio calculations, we have detected and characterized the atomic and electronic structures of a novel line defect in NdTiO3 perovskite. It appears in STEM images as a perovskite cell rotated by 45°. It consists of self-organized Ti-O vacancy lines replaced by Nd columns surrounding a central Ti-O octahedral chain containing Ti4+ ions, as opposed to Ti3+ in the host. The distinct Ti valence in this line defect introduces the possibility of engineering exotic conducting properties in a single preferred direction and tailoring novel desirable functionalities in this Mott insulator.

9.
Sci Adv ; 7(3)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33523903

RESUMEN

A line defect with metallic characteristics has been found in optically transparent BaSnO3 perovskite thin films. The distinct atomic structure of the defect core, composed of Sn and O atoms, was visualized by atomic-resolution scanning transmission electron microscopy (STEM). When doped with La, dopants that replace Ba atoms preferentially segregate to specific crystallographic sites adjacent to the line defect. The electronic structure of the line defect probed in STEM with electron energy-loss spectroscopy was supported by ab initio theory, which indicates the presence of Fermi level-crossing electronic bands that originate from defect core atoms. These metallic line defects also act as electron sinks attracting additional negative charges in these wide-bandgap BaSnO3 films.

10.
Science ; 367(6481): 1030-1034, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32108110

RESUMEN

Fast-charging batteries typically use electrodes capable of accommodating lithium continuously by means of solid-solution transformation because they have few kinetic barriers apart from ionic diffusion. One exception is lithium titanate (Li4Ti5O12), an anode exhibiting extraordinary rate capability apparently inconsistent with its two-phase reaction and slow Li diffusion in both phases. Through real-time tracking of Li+ migration using operando electron energy-loss spectroscopy, we reveal that facile transport in Li4+ x Ti5O12 is enabled by kinetic pathways comprising distorted Li polyhedra in metastable intermediates along two-phase boundaries. Our work demonstrates that high-rate capability may be enabled by accessing the energy landscape above the ground state, which may have fundamentally different kinetic mechanisms from the ground-state macroscopic phases. This insight should present new opportunities in searching for high-rate electrode materials.

11.
J Phys Chem B ; 124(7): 1253-1258, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31977217

RESUMEN

Understanding the factors that control solubility and speciation of metal ions in molten salts is key for their successful use in molten salt reactors and electrorefining. Here, we employ X-ray and optical absorption spectroscopies and molecular dynamics simulations to investigate the coordination environment of Ni(II) in molten ZnCl2, where it is poorly soluble, and contrast it with highly soluble Co(II) over a wide temperature range. In solid NiCl2, the Ni ion is octahedrally coordinated, whereas the ZnCl2 host matrix favors tetrahedral coordination. Our experimental and computational results show that the coordination environment of Ni(II) in ZnCl2 is disordered among tetra- and pentacoordinate states. In contrast, the local structure of dissolved Co(II) is tetrahedral and commensurate with the ZnCl2 host's structure. The heterogeneity and concomitant large bond length disorder in the Ni case constitute a plausible explanation for its lower solubility in molten ZnCl2.

12.
J Phys Chem Lett ; 10(24): 7603-7610, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31738562

RESUMEN

The development of technologies for nuclear reactors based on molten salts has seen a big resurgence. The success of thermodynamic models for these hinges in part on our ability to predict at the atomistic level the behavior of pure salts and their mixtures under a range of conditions. In this letter, we present high-energy X-ray scattering experiments and molecular dynamics simulations that describe the molten structure of mixtures of MgCl2 and KCl. As one would expect, KCl is a prototypical salt in which structure is governed by simple charge alternation. In contrast, MgCl2 and its mixtures with KCl display more complex correlations including intermediate-range order and the formation of Cl--decorated Mg2+ chains. A thorough computational analysis suggests that intermediate-range order beyond charge alternation may be traced to correlations between these chains. An analysis of the coordination structure for Mg2+ ions paints a more complex picture than previously understood, with multiple accessible states of distinct geometries.

13.
Phys Rev B ; 972018.
Artículo en Inglés | MEDLINE | ID: mdl-31080938

RESUMEN

The valence-to-core (V2C) portion of x-ray emission spectroscopy (XES) measures the electron states close to the Fermi level. These states are involved in bonding, thus providing a measure of the chemistry of the material. In this article, we show the V2C XES spectra for several niobium compounds. The Kß″ peak in the V2C XES results from the transition of a ligand 2s electron into the 1s core-hole of the niobium, a transition allowed by hybridization with the niobium 4p. This location in energy of this weak peak shows a strong ligand dependence, thus providing a sensitive probe of the ligand environment about the niobium.

14.
Artículo en Inglés | MEDLINE | ID: mdl-31093600

RESUMEN

Doped metal oxide materials are commonly used for applications in energy storage and conversion, such as batteries and solid oxide fuel cells. The knowledge of the electronic properties of dopants and their local environment is essential for understanding the effects of doping on the electrochemical properties. Using a combination of X-ray absorption near-edge structure spectroscopy (XANES) experiment and theoretical modeling we demonstrate that in the dilute (1 at. %) Mn-doped lithium titanate (Li4/3Ti5/3O4, or LTO) the dopant Mn2+ ions reside on tetrahedral (8a) sites. First-principles Mn K-edge XANES calculations revealed the spectral signature of the tetrahedrally coordinated Mn as a sharp peak in the middle of the absorption edge rise, caused by the 1s → 4p transition, and it is important to include the effective electron-core hole Coulomb interaction in order to calculate the intenisty of this peak accurately. This dopant location explains the impedance of Li migration through the LTO lattice during the charge-discharge process, and, as a result - the observed remarkable 20% decrease in electrochemical rate performance of the 1% Mn-doped LTO compared to the pristine LTO.

15.
Adv Mater ; 28(30): 6465-70, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27171481

RESUMEN

A giant bandgap reduction in layered GaTe is demonstrated. Chemisorption of oxygen to the Te-terminated surfaces produces significant restructuring of the conduction band resulting in a bandgap below 0.8 eV, compared to 1.65 eV for pristine GaTe. Localized partial recovery of the pristine gap is achieved by thermal annealing, demonstrating that reversible band engineering in layered semiconductors is accessible through their surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA