Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 95(4): 677-687, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38113326

RESUMEN

OBJECTIVE: Parkinson's disease (PD) is a neurodegenerative disorder with complex etiology. Multiple genetic and environmental factors have been associated with PD, but most PD risk remains unexplained. The aim of this study was to test for statistical interactions between PD-related genetic and environmental exposures in the 23andMe, Inc. research dataset. METHODS: Using a validated PD polygenic risk score and common PD-associated variants in the GBA gene, we explored interactions between genetic susceptibility factors and 7 lifestyle and environmental factors: body mass index (BMI), type 2 diabetes (T2D), tobacco use, caffeine consumption, pesticide exposure, head injury, and physical activity (PA). RESULTS: We observed that T2D, as well as higher BMI, caffeine consumption, and tobacco use, were associated with lower odds of PD, whereas head injury, pesticide exposure, GBA carrier status, and PD polygenic risk score were associated with higher odds. No significant association was observed between PA and PD. In interaction analyses, we found statistical evidence for an interaction between polygenic risk of PD and the following environmental/lifestyle factors: T2D (p = 6.502 × 10-8), PA (p = 8.745 × 10-5), BMI (p = 4.314 × 10-4), and tobacco use (p = 2.236 × 10-3). Although BMI and tobacco use were associated with lower odds of PD regardless of the extent of individual genetic liability, the direction of the relationship between odds of PD and T2D, as well as PD and PA, varied depending on polygenic risk score. INTERPRETATION: We provide preliminary evidence that associations between some environmental and lifestyle factors and PD may be modified by genotype. ANN NEUROL 2024;95:677-687.


Asunto(s)
Traumatismos Craneocerebrales , Diabetes Mellitus Tipo 2 , Enfermedad de Parkinson , Plaguicidas , Humanos , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/genética , Interacción Gen-Ambiente , Diabetes Mellitus Tipo 2/complicaciones , Cafeína , Factores de Riesgo , Predisposición Genética a la Enfermedad/genética , Puntuación de Riesgo Genético , Traumatismos Craneocerebrales/complicaciones
2.
J Insect Physiol ; 59(11): 1111-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24036172

RESUMEN

Olfaction plays an important role in the host-seeking behavior of the malaria mosquito Anopheles gambiae. After a complete blood meal, female mosquitoes will not engage in host-seeking behavior until oviposition has occurred. We investigated if peripheral olfactory sensitivity changed after a blood meal by recording electroantennograms (EAGs) of female mosquitoes at three time points (2h, 48 h and 72 h) to 15 volatile kairomones of either human origin or documented to emanate from oviposition sites. The EAG-sensitivity was compared with that of females of similar age post eclosion. As is common practice in electrophysiological studies, the EAG recordings were obtained by repeated stimulation of the same antennal preparations. We introduce mixed linear modeling as an improved statistical analysis for electrophysiological data. Two hours after blood ingestion, olfactory sensitivity as quantified through EAG-recording increased significantly and selectively, i.e. for seven compounds, compared to unfed females of the same age. Such short-term electrophysiological sensitization in the olfactory system as a result of feeding has not been documented before for insects. Sensitization to six compounds persisted until 48 h or 72 h post-blood meal at one or more concentrations. Desensitization was observed at 48 and 72 h pbm in response to two and three kairomones, respectively. For several compounds, sensitization at the EAG-level corresponded with sensitization found previously in single sensillum studies on olfactory neurons in antennal sensilla trichodea of An. gambiae females. These effects are likely to reflect sensitization to oviposition cues, as eggs have matured 48-72 h pbm. Knowledge of changes in olfactory sensitivity to kairomones can be applied to increase trap catches of malaria mosquitoes that have taken a blood meal and need to locate oviposition sites.


Asunto(s)
Anopheles/fisiología , Sangre , Señales (Psicología) , Conducta Alimentaria/fisiología , Olfato/fisiología , Animales , Antenas de Artrópodos/fisiología , Femenino , Liberia , Modelos Lineales , Oviposición/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA