Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 20(3): e3001593, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35324889

RESUMEN

Actomyosin contractility is a major engine of preimplantation morphogenesis, which starts at the 8-cell stage during mouse embryonic development. Contractility becomes first visible with the appearance of periodic cortical waves of contraction (PeCoWaCo), which travel around blastomeres in an oscillatory fashion. How contractility of the mouse embryo becomes active remains unknown. We have taken advantage of PeCoWaCo to study the awakening of contractility during preimplantation development. We find that PeCoWaCo become detectable in most embryos only after the second cleavage and gradually increase their oscillation frequency with each successive cleavage. To test the influence of cell size reduction during cleavage divisions, we use cell fusion and fragmentation to manipulate cell size across a 20- to 60-µm range. We find that the stepwise reduction in cell size caused by cleavage divisions does not explain the presence of PeCoWaCo or their accelerating rhythm. Instead, we discover that blastomeres gradually decrease their surface tensions until the 8-cell stage and that artificially softening cells enhances PeCoWaCo prematurely. We further identify the programmed down-regulation of the formin Fmnl3 as a required event to soften the cortex and expose PeCoWaCo. Therefore, during cleavage stages, cortical softening, mediated by Fmnl3 down-regulation, awakens zygotic contractility before preimplantation morphogenesis.


Asunto(s)
Blastómeros , Desarrollo Embrionario , Animales , Blastómeros/metabolismo , Embrión de Mamíferos , Femenino , Ratones , Morfogénesis , Embarazo , Cigoto
2.
Life Sci Alliance ; 6(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36944420

RESUMEN

The oocyte must grow and mature before fertilization, thanks to a close dialogue with the somatic cells that surround it. Part of this communication is through filopodia-like protrusions, called transzonal projections (TZPs), sent by the somatic cells to the oocyte membrane. To investigate the contribution of TZPs to oocyte quality, we impaired their structure by generating a full knockout mouse of the TZP structural component myosin-X (MYO10). Using spinning disk and super-resolution microscopy combined with a machine-learning approach to phenotype oocyte morphology, we show that the lack of Myo10 decreases TZP density during oocyte growth. Reduction in TZPs does not prevent oocyte growth but impairs oocyte-matrix integrity. Importantly, we reveal by transcriptomic analysis that gene expression is altered in TZP-deprived oocytes and that oocyte maturation and subsequent early embryonic development are partially affected, effectively reducing mouse fertility. We propose that TZPs play a role in the structural integrity of the germline-somatic complex, which is essential for regulating gene expression in the oocyte and thus its developmental potential.


Asunto(s)
Folículo Ovárico , Seudópodos , Femenino , Animales , Ratones , Folículo Ovárico/metabolismo , Oocitos/metabolismo , Oogénesis/fisiología , Células Germinativas , Miosinas
3.
Elife ; 102021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33871354

RESUMEN

During the first days of mammalian development, the embryo forms the blastocyst, the structure responsible for implanting the mammalian embryo. Consisting of an epithelium enveloping the pluripotent inner cell mass and a fluid-filled lumen, the blastocyst results from a series of cleavage divisions, morphogenetic movements, and lineage specification. Recent studies have identified the essential role of actomyosin contractility in driving cytokinesis, morphogenesis, and fate specification, leading to the formation of the blastocyst. However, the preimplantation development of contractility mutants has not been characterized. Here, we generated single and double maternal-zygotic mutants of non-muscle myosin II heavy chains (NMHCs) to characterize them with multiscale imaging. We found that Myh9 (NMHC II-A) is the major NMHC during preimplantation development as its maternal-zygotic loss causes failed cytokinesis, increased duration of the cell cycle, weaker embryo compaction, and reduced differentiation, whereas Myh10 (NMHC II-B) maternal-zygotic loss is much less severe. Double maternal-zygotic mutants for Myh9 and Myh10 show a much stronger phenotype, failing most of the attempts of cytokinesis. We found that morphogenesis and fate specification are affected but nevertheless carry on in a timely fashion, regardless of the impact of the mutations on cell number. Strikingly, even when all cell divisions fail, the resulting single-celled embryo can initiate trophectoderm differentiation and lumen formation by accumulating fluid in increasingly large vacuoles. Therefore, contractility mutants reveal that fluid accumulation is a cell-autonomous process and that the preimplantation program carries on independently of successful cell division.


Asunto(s)
Blastocisto/metabolismo , División Celular , Mutación , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIB no Muscular/genética , Animales , Ciclo Celular , Diferenciación Celular , Citocinesis , Bases de Datos Genéticas , Técnicas de Cultivo de Embriones , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía por Video , Morfogénesis , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Factores de Tiempo , Imagen de Lapso de Tiempo
4.
Science ; 365(6452): 465-468, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31371608

RESUMEN

During mouse pre-implantation development, the formation of the blastocoel, a fluid-filled lumen, breaks the radial symmetry of the blastocyst. The factors that control the formation and positioning of this basolateral lumen remain obscure. We found that accumulation of pressurized fluid fractures cell-cell contacts into hundreds of micrometer-size lumens. These microlumens eventually discharge their volumes into a single dominant lumen, which we model as a process akin to Ostwald ripening, underlying the coarsening of foams. Using chimeric mutant embryos, we tuned the hydraulic fracturing of cell-cell contacts and steered the coarsening of microlumens, allowing us to successfully manipulate the final position of the lumen. We conclude that hydraulic fracturing of cell-cell contacts followed by contractility-directed coarsening of microlumens sets the first axis of symmetry of the mouse embryo.


Asunto(s)
Blastocisto/citología , Adhesión Celular , Desarrollo Embrionario , Animales , Presión Hidrostática , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA