RESUMEN
Germanium is a promising basis for nanomaterials due to its low toxicity and valuable optical and electronic properties. However, germanium nanomaterials have seen little research compared to other group 14 elements due to unpredictable chemical behavior and high costs. Here, we report the dehydrocoupling of o-tolylgermanium trihydride to amorphous nanoparticles. The reaction is facilitated through reflux at 162 °C and can be accelerated with an amine base catalyst. Through cleavage of both H2 and toluene, new Ge-Ge bonds form. This results in nanoparticles consisting of crosslinked germanium with o-tolyl termination. The particles are 2-6â nm in size and have masses above approximately 3500â Da. The organic substituents are promising for further functionalization. Combined with strong absorption up to 600â nm and moderate solubility and air stability, there are numerous possibilities for future applications.
RESUMEN
A new class of compounds inhibiting de-O-glycosylation of proteins has been identified. Highly substituted diaminocyclopentanes are impressively selective reversible non-transition state O-ß-N-acetyl-d-glucosaminidase (O-GlcNAcase) inhibitors. The ease of preparative access and remarkable biological activities provide highly viable leads for the development of anti-tau-phosphorylation agents with a view to eventually ameliorating Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer , beta-N-Acetilhexosaminidasas , Humanos , Hexosaminidasas , GlicosilaciónRESUMEN
Three new tripod tetradentate phenolate-amines (H2L1, H2L4 and H2L9), together with seven more already related published ligands, were synthesized, and characterized. With these ligands, two new dinuclear doubly-bridged-phenoxido copper(II) complexes (3, 4), and six more complexes (1, 2, 5-8), a new trinuclear complex (9) with an alternative doubly-bridged-phenoxido and -methoxido, as well as the 1D polymer (10) were synthesized, and their molecular structures were characterized by spectroscopic methods and X-ray single crystal crystallography. The Cu(II) centers in these complexes exhibit distorted square-pyramidal arrangement in 1-4, mixed square pyramidal and square planar in 5, 6, and 9, and distorted octahedral (5+1) arrangements in 7 and 8. The temperature dependence magnetic susceptibility study over the temperature range 2-300 K revealed moderate-relatively strong antiferromagnetic coupling (AF) (|J| = 289-145 cm-1) in complexes 1-6, weak-moderate AF (|J| = 59 cm-1) in the trinuclear complex 9, but weak AF interactions (|J| = 3.6 & 4.6 cm-1) were obtained in 7 and 8. No correlation was found between the exchange coupling J and the geometrical structural parameters of the four-membered Cu2O2 rings.
RESUMEN
Metal-organic frameworks (MOFs) offer disruptive potential in micro- and optoelectronics because of the unique properties of these microporous materials. Nanoscale patterning is a fundamental step in the implementation of MOFs in miniaturized solid-state devices. Conventional MOF patterning methods suffer from low resolution and poorly defined pattern edges. Here, we demonstrate the resist-free, direct X-ray and electron-beam lithography of MOFs. This process avoids etching damage and contamination and leaves the porosity and crystallinity of the patterned MOFs intact. The resulting high-quality patterns have excellent sub-50-nm resolution, and approach the mesopore regime. The compatibility of X-ray and electron-beam lithography with existing micro- and nanofabrication processes will facilitate the integration of MOFs in miniaturized devices.
RESUMEN
Tetraacylgermanes are known as highly efficient photoinitiators. Herein, the synthesis of mixed tetraacylgermanes 4 a-c and 6 a-e with a nonsymmetric substitution pattern is presented. Germenolates are crucial intermediates of these new synthetic protocols. The synthesized compounds show increased solubility compared with symmetrically substituted tetraacylgermanes 1 a-d. Moreover, these mixed derivatives reveal broadened n-π* absorption bands, which enhance their photoactivity. Higher absorption of these new compounds at wavelengths above 450â nm causes efficient photobleaching when using an LED emitting at 470â nm. The quantum yields are in the range of 0.15-0.57, depending on the nature of the aroyl substituents. On the basis of these properties, mixed-functionalized tetraacylgermanes serve as ideal photoinitiators in various applications, especially in those requiring high penetration depth. The synthesized compounds were characterized by elemental analysis, IR spectroscopy, NMR and CIDNP spectroscopy, UV/Vis spectroscopy, photolysis experiments, and X-ray crystallography. The CIDNP data suggest that the germyl radicals generated from the new tetraacylgermanes preferentially add to the tail of the monomer butyl acrylate. In the case of 6 a-e only the mesitoyl groups are cleaved off, whereas for 4 a-c both the mesitoyl and the aroyl group are subject to α-cleavage.
RESUMEN
We have synthesized the first isolable geminal bisenolates L2 K2 Ge[(CO)R]2 (R=2,4,6-trimethylphenyl (2 a,b), L=THF for (2 a) or [18]-crown-6 for (2 b)), a new synthon for the synthesis of organometallic reagents. The formation of these derivatives was confirmed by NMR spectroscopy and X-ray crystallographic analysis. The UV/Vis spectra of these anions show three distinct bands, which were assigned by DFT calculations. The efficiency of 2 a,b to serve as new building block in macromolecular chemistry is demonstrated by the reactions with two different types of electrophiles (acid chlorides and alkyl halides). In all cases the salt metathesis reaction gave rise to novel Ge-based photoinitiators in good yields.
RESUMEN
The formation of a stable triacylgermenolate 2 as a decisive intermediate was achieved by using three pathways. The first two methods involve the reaction of KOtBu or alternatively potassium with tetraacylgermane 1 yielding 2 via one electron transfer. The mechanism involves the formation of radical anions (shown by EPR). This reaction is highly efficient and selective. The third method is a classical salt metathesis reaction toward 2 in nearly quantitative yield. The formation of 2 was confirmed by NMR spectroscopy, UV-vis measurements, and X-ray crystallography. Germenolate 2 serves as a starting point for a wide variety of organo-germanium compounds. We demonstrate the potential of this intermediate by introducing new types of Ge-based photoinitiators 4b-4f. The UV-vis absorption spectra of 4b-4f show considerably increased band intensities due to the presence of eight or more chromophores. Moreover, compounds 4d-4f show absorption tailing up to 525 nm. The performance of these photoinitiators is demonstrated by spectroscopy (time-resolved EPR, laser flash photolysis (LFP), photobleaching (UV-vis)) and photopolymerization experiments (photo-DSC measurements).
RESUMEN
A novel series of mononuclear five-coordinated pseudohalido-Cu(II) complexes displaying distorted square bipyramidal: [Cu(L1)(NCS)2] (1), [Cu(L2)(NCS)2] (2) and [Cu(L3)(NCS)]ClO4 (5) as well as distorted trigonal bipyramidal: [Cu(isp3tren)(N3)]ClO4 (3), [Cu(isp3tren)(dca)]ClO4 (4) and [Cu(tedmpza)(dca)]ClO4·0.67H2O (6) geometries had been synthesized and structurally characterized using X-ray single crystal crystallography, elemental microanalysis, IR and UV-vis spectroscopy, and molar conductivity measurements. Different N-donor amine skeletons including tridentate: L1 = [(2-pyridyl)-2-ethyl)-(3,4-dimethoxy)-2-methylpyridyl]methylamine and L2 = [(2-pyridyl)-2-ethyl)-(3,5-dimethyl-4-methoxy)-2-methyl-pyridyl]methylamine, and tetradentate: L3 = bis(2-ethyl-di(3,5-dimethyl-1H-pyrazol-1-yl)-[2-(3,4-dimethoxy-pyridylmethyl)]amine, tedmpza = tris[(2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl]amine and isp3tren = tris[(2-isopropylamino)ethyl)]amine ligands were employed. Molecular structural parameters such as nature of coligand, its chelate ring size and steric environment incorporated into its skeleton, which lead to adopting one of the two limiting geometries in these complexes and other reported compounds are analyzed and correlated to their assigned geometries in solutions. Similar analysis were extended to other five-coordinated halido-Cu(II) complexes.
Asunto(s)
Aminas/química , Complejos de Coordinación/química , Cobre/química , Piridinas/química , Ligandos , Estructura Molecular , Pirazoles/química , SolucionesRESUMEN
Glycosidase inhibitors have shown great potential as pharmacological chaperones for lysosomal storage diseases. In light of this, a series of new cyclopentanoid ß-galactosidase inhibitors were prepared and their inhibitory and pharmacological chaperoning activities determined and compared with those of lipophilic analogs of the potent ß-d-galactosidase inhibitor 4-epi-isofagomine. Structure-activity relationships were investigated by X-ray crystallography as well as by alterations in the cyclopentane moiety such as deoxygenation and replacement by fluorine of a "strategic" hydroxyl group. New compounds have revealed highly promising activities with a range of ß-galactosidase-compromised human cell lines and may serve as leads towards new pharmacological chaperones for GM1-gangliosidosis and Morquio B disease.
Asunto(s)
Ciclopentanos/farmacología , Galactosidasas/metabolismo , Iminopiranosas/farmacología , Lisosomas/enzimología , Chaperonas Moleculares/metabolismo , Cristalización , Ciclopentanos/síntesis química , Ciclopentanos/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Galactosidasas/antagonistas & inhibidores , Humanos , Iminopiranosas/síntesis química , Iminopiranosas/química , Ligandos , Lisosomas/efectos de los fármacos , Conformación Molecular , Proteínas Mutantes/metabolismoRESUMEN
Branched higher silicon hydrides Si nH2 n+2 with n > 6 were recently found to be excellent precursors for the liquid phase deposition of silicon films. Herein we report the gram-scale synthesis of the novel nona- and decasilanes (H3Si)3Si(SiH2) nSi(SiH3)3 (2: n = 1, 5: n = 2) from (H3Si)3SiLi and Cl(SiPh2) nCl by a combined salt elimination/dephenylation/hydrogenation approach. Structure elucidation of the target molecules was performed by NMR spectroscopy and X-ray crystallography. 2 and 5 are nonpyrophoric and exhibit a bathochromically shifted UV absorption compared to neopentasilane and the structurally related octasilane (H3Si)3SiSi(SiH3)3. TG-MS analysis elucidated increased decomposition temperatures and decreased ceramic yields for branched hydrosilanes relative to cyclopentasilane. Otherwise, very similar thermal properties were observed for hydrosilane oligomers with linear and branched structures.
RESUMEN
The first tetraacylstannanes Sn[(CO)R]4 (R=2,4,6-trimethylphenyl (1 a) and 2,6-dimethylphenyl (1 b)), a class of highly efficient Sn-based photoinitiators, were synthesized. The formation of these derivatives was confirmed by NMR spectroscopy, mass spectrometry, and X-ray crystallography. The UV/Vis absorption spectra of 1 a, b reveal a significant redshift of the longest wavelength absorption compared to the corresponding germanium compounds. In contrast to the known toxicity of organotin derivatives, the AMES test and cytotoxicity studies reveal intriguing low toxicity. The excellent performance of 1 as photoinitiators is demonstrated by photobleaching (UV/Vis) and NMR/CIDNP investigations, as well as photo-DSC studies.
RESUMEN
From 1,2;3,4-di-O-isopropylidene-d-galactopyranose, a preliminary series of highly functionalized amino(hydroxymethyl)cyclopentanes was easily available. These amine-containing basic carbasugars featuring the d-galacto configuration are potent inhibitors of the GH20 ß-d-hexosaminidases probed and may bear potential as regulators of N-acetyl-d-hexosaminidase activities in vivo.
Asunto(s)
Ciclopentanos/farmacología , Inhibidores Enzimáticos/farmacología , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores , Cristalografía por Rayos X , Ciclopentanos/síntesis química , Ciclopentanos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Conformación Molecular , beta-N-Acetilhexosaminidasas/metabolismoRESUMEN
This paper reports advances in redox transmetalation/protolysis (RTP) utilizing the readily available Ph3Bi for the synthesis of a series of barium metal-organic species. On the basis of easily available starting materials, an easy one-pot procedure, and workup, we have obtained BaL2 compounds (L = bis(trimethylsilyl)amide, phenyl(trimethylsilyl)amide, pentamethylcyclopentadienide, fluorenide, 2,6-di-isopropylphenolate, and 3,5-diphenylpyrazolate) quantitatively by sonication of an excess of barium metal with triphenylbismuth and HL in perdeuterotetrahydrofuran, as established by NMR measurements. Rates of conversion are affected by both pKa and bulk of HL. Competition occurs from direct reaction of Ba with HL, thereby enhancing the overall conversion, the effect being pronounced for the less bulky and more acidic ligands. Overall, the method significantly adds to the synthetic armory for barium metal-organic/organometallic compounds.
RESUMEN
Herein, we report on the first sila-aldol reaction, which emphasizes the tight connection between silicon and carbon chemistry. This novel synthetic method provides straightforward access to 2-oxahexasilabicyclo[3.2.1]octan-8-ide, a structurally complex silicon framework, in quantitative yield. Its structure was confirmed by NMR spectroscopy and X-ray crystallography, and it displays a distinctive charge-transfer transition. The complete mechanism of this highly selective rearrangement cascade is outlined and supported by density functional theory (DFT) calculations, which highlight the thermodynamic driving force and the low activation barriers of this powerful silicon-carbon bond-forming strategy.
RESUMEN
In this contribution a convenient synthetic method to obtain tetraacylgermanes Ge[C(O)R]4 (R=mesityl (1 a), phenyl (1 b)), a previously unknown class of highly efficient Ge-based photoinitiators, is described. Tetraacylgermanes are easily accessible via a one-pot synthetic protocol in >85 % yield, as confirmed by NMR spectroscopy, mass spectrometry, and X-ray crystallography. The efficiency of 1 a,b as photoinitiators is demonstrated in photobleaching (UV/Vis), time-resolved EPR (CIDEP), and NMR/CIDNP investigations as well as by photo-DSC studies. Remarkably, the tetraacylgermanes exceed the performance of currently known long-wavelength visible-light photoinitiators for free-radical polymerization.
RESUMEN
Herein a convenient synthetic method to obtain 2,2,3,3-tetrasilyltetrasilane 3 and 2,2,3,3,4,4-hexasilylpentasilane 4 on a multigram scale is presented. Proton-coupled 29 Siâ NMR spectroscopy and single-crystal X-ray crystallography enabled unequivocal structural assignment. Owing to their unique properties, which are reflected in their nonpyrophoric character on contact with air and their enhanced light absorption above 250â nm, 3 and 4 are valuable precursors for liquid-phase deposition (LPD) and the processing of thin silicon films. Amorphous silicon (a-Si:H) films of excellent quality were deposited starting from 3 and characterized by conductivity measurements, ellipsometry, optical microscopy, and Raman spectroscopy.
RESUMEN
Mixed Si/Ge hydrides SixGeyHz are valuable precursors for the deposition of binary Si-Ge alloys. This work describes the synthesis and full characterization of the previously unknown germaisotetrasilane Ph3GeSi(SiH3)3 (2) on a multigram scale from the reaction of the lithium silanide LiSi(SiH3)3 with Ph3GeCl. The stability of the Si-Ge bond in 2 versus electrophiles and nucleophiles has been investigated with the primary aim of developing new approaches to mixed sila-H-germanes (H3Ge)xSi(SiH3)4-x. With 1 equiv of MeLi, 2 reacted cleanly under cleavage of one Si-Si bond to give Ph3GeSi(SiH3)2Li, which is a valuable synthon for further derivatization. In contrast, the dephenylation reaction of 2 with 1 or 2 equiv of CF3SO3H/iBu2AlH proceeded much less selectively and afforded the desired Ph/H-germasilanes Ph2HGeSi(SiH3)3 and PhH2GeSi(SiH3)3 along with considerable amounts of Si-Ge scission products.
RESUMEN
The development of a continuous flow multistep strategy for the synthesis of linear peptoids and their subsequent macrocyclization via Click chemistry is described. The central transformation of this process is an Ugi four-component reaction generating the peptidomimetic core structure. In order to avoid exposure to the often toxic and malodorous isocyanide building blocks, the continuous approach was telescoped by the dehydration of the corresponding formamide. In a concurrent operation, the highly energetic azide moiety required for the subsequent intramolecular copper-catalyzed azide-alkyne cycloaddition (Click reaction) was installed by nucleophilic substitution from a bromide precursor. All steps yielding to the linear core structures can be conveniently coupled without the need for purification steps resulting in a single process generating the desired peptidomimetics in good to excellent yields within a 25 min reaction time. The following macrocyclization was realized in a coil reactor made of copper without any additional additive. A careful process intensification study demonstrated that this transformation occurs quantitatively within 25 min at 140 °C. Depending on the resulting ring strain, either a dimeric or a monomeric form of the cyclic product was obtained.
Asunto(s)
Alquinos/química , Azidas/química , Cobre/química , Péptidos Cíclicos/síntesis química , Catálisis , Ciclización , Microondas , Estructura Molecular , Péptidos Cíclicos/química , PeptidomiméticosRESUMEN
A new Staudinger/aza Wittig/Strecker multicomponent reaction sequence to C-1-cyano iminoalditols has been developed. When applied to 5-azidodeoxy-d-xylose and -d-glucose as substrates the method leads smoothly in good yield and with excellent stereoselectivity to respectively, 1,5-dideoxy-1,5-imino-d-idurono nitrile and 2,6-didesoxy-2,6-imino-d-glycero-d-ido-heptononitrile.
Asunto(s)
Iminopiranosas/síntesis química , Nitrilos/química , Compuestos Aza/química , Cristalografía por Rayos X , Iminopiranosas/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , EstereoisomerismoRESUMEN
In this contribution, we present the synthesis of two groups of novel acylsilanes 1-6. Compounds 1 and 2 represent tris(trimethoxysilyl)acylsilanes, and compounds 3-6 are 1,4-tetrakis(silyl)-1,4-bisacylsilanes. All isolated compounds were characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography. Additionally, these compounds were further analyzed by ultraviolet/visible (UV/vis) spectroscopy and their longest wavelength absorption bands were assigned by density functional theory (DFT) calculations. On the basis of the well-known Brook rearrangement of acylsilanes, we irradiated 1-6 in benzene solutions at 405 nm (λ) for several hours. Photolysis of compounds 1 and 2 afforded the same silene rearrangement products as found in previous investigations of structurally related acylsilanes. In addition, trapping experiments with MeOH further support our proposed mechanism for silene formation. The photolysis of tetrakis(trimethylsilyl)bisacylsilane 3 gave rise to the formation of a monosilene intermediate 10; upon prolonged irradiation, the subsequently formed bissilene undergoes a fast dimerization to bicyclic product 11. Interestingly, unlike the expected head-to-head dimerization of Brook-type silenes, this bissilene undergoes a selective head-to-tail dimerization. In contrast, tetrakis(trimethylsilyl)bisacylsilane 4 undergoes a selective and completely stereoselective double CH activation to air stable bicyclic system 12. The mechanism of this rearrangement is fully described by DTF calculations. Unfortunately, tetrakis(trimethoxysilyl)bisacylsilanes 5 and 6 underwent unselective photochemical rearrangements.