Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Metab ; 6(3): 448-457, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418586

RESUMEN

Insulin resistance is an early complication of diet-induced obesity (DIO)1, potentially leading to hyperglycaemia and hyperinsulinaemia, accompanied by adaptive ß cell hypertrophy and development of type 2 diabetes2. Insulin not only signals via the insulin receptor (INSR), but also promotes ß cell survival, growth and function via the insulin-like growth factor 1 receptor (IGF1R)3-6. We recently identified the insulin inhibitory receptor (inceptor) as the key mediator of IGF1R and INSR desensitization7. But, although ß cell-specific loss of inceptor improves ß cell function in lean mice7, it warrants clarification whether inceptor signal inhibition also improves glycaemia under conditions of obesity. We assessed the glucometabolic effects of targeted inceptor deletion in either the brain or the pancreatic ß cells under conditions of DIO in male mice. In the present study, we show that global and neuronal deletion of inceptor, as well as its adult-onset deletion in the ß cells, improves glucose homeostasis by enhancing ß cell health and function. Moreover, we demonstrate that inceptor-mediated improvement in glucose control does not depend on inceptor function in agouti-related protein-expressing or pro-opiomelanocortin neurons. Our data demonstrate that inceptor inhibition improves glucose homeostasis in mice with DIO, hence corroborating that inceptor is a crucial regulator of INSR and IGF1R signalling.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ratones , Masculino , Animales , Células Secretoras de Insulina/metabolismo , Glucosa/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/genética , Obesidad/metabolismo , Dieta , Insulina/metabolismo , Homeostasis , Neuronas/metabolismo
2.
J Cell Sci ; 124(Pt 8): 1245-55, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21406566

RESUMEN

MIM/MTSS1 is a tissue-specific regulator of plasma membrane dynamics, whose altered expression levels have been linked to cancer metastasis. MIM deforms phosphoinositide-rich membranes through its I-BAR domain and interacts with actin monomers through its WH2 domain. Recent work proposed that MIM also potentiates Sonic hedgehog (Shh)-induced gene expression. Here, we generated MIM mutant mice and found that full-length MIM protein is dispensable for embryonic development. However, MIM-deficient mice displayed a severe urinary concentration defect caused by compromised integrity of kidney epithelia intercellular junctions, which led to bone abnormalities and end-stage renal failure. In cultured kidney epithelial (MDCK) cells, MIM displayed dynamic localization to adherens junctions, where it promoted Arp2/3-mediated actin filament assembly. This activity was dependent on the ability of MIM to interact with both membranes and actin monomers. Furthermore, results from the mouse model and cell culture experiments suggest that full-length MIM is not crucial for Shh signaling, at least during embryogenesis. Collectively, these data demonstrate that MIM modulates interplay between the actin cytoskeleton and plasma membrane to promote the maintenance of intercellular contacts in kidney epithelia.


Asunto(s)
Actinas/metabolismo , Epitelio/metabolismo , Uniones Intercelulares/metabolismo , Riñón/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Línea Celular , Células Cultivadas , Perros , Humanos , Uniones Intercelulares/genética , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Neoplasias/genética , Unión Proteica
3.
FASEB J ; 26(9): 3916-30, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22730437

RESUMEN

Cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial electron transport chain. The purpose of this study was to analyze the function of lung-specific cytochrome c oxidase subunit 4 isoform 2 (COX4i2) in vitro and in COX4i2-knockout mice in vivo. COX was isolated from cow lung and liver as control and functionally analyzed. COX4i2-knockout mice were generated and the effect of the gene knockout was determined, including COX activity, tissue energy levels, noninvasive and invasive lung function, and lung pathology. These studies were complemented by a comprehensive functional screen performed at the German Mouse Clinic (Neuherberg, Germany). We show that isolated cow lung COX containing COX4i2 is about twice as active (88 and 102% increased activity in the presence of allosteric activator ADP and inhibitor ATP, respectively) as liver COX, which lacks COX4i2. In COX4i2-knockout mice, lung COX activity and cellular ATP levels were significantly reduced (-50 and -29%, respectively). Knockout mice showed decreased airway responsiveness (60% reduced P(enh) and 58% reduced airway resistance upon challenge with 25 and 100 mg methacholine, respectively), and they developed a lung pathology deteriorating with age that included the appearance of Charcot-Leyden crystals. In addition, there was an interesting sex-specific phenotype, in which the knockout females showed reduced lean mass (-12%), reduced total oxygen consumption rate (-8%), improved glucose tolerance, and reduced grip force (-14%) compared to wild-type females. Our data suggest that high activity lung COX is a central determinant of airway function and is required for maximal airway responsiveness and healthy lung function. Since airway constriction requires energy, we propose a model in which reduced tissue ATP levels explain protection from airway hyperresponsiveness, i.e., absence of COX4i2 leads to reduced lung COX activity and ATP levels, which results in impaired airway constriction and thus reduced airway responsiveness; long-term lung pathology develops in the knockout mice due to impairment of energy-costly lung maintenance processes; and therefore, we propose mitochondrial oxidative phosphorylation as a novel target for the treatment of respiratory diseases, such as asthma.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Pulmón/patología , Animales , Secuencia de Bases , Northern Blotting , Western Blotting , Cartilla de ADN , Complejo IV de Transporte de Electrones/genética , Pulmón/enzimología , Pulmón/fisiología , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa
4.
J Pathol ; 226(5): 723-34, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21984419

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) and its precursor lesions, pancreatic intraepithelial neoplasia (PanIN), display a ductal phenotype. However, there is evidence in genetically defined mouse models for PDAC harbouring a mutated kras under the control of a pancreas-specific promoter that ductal cancer might arise in the centroacinar-acinar region, possibly through a process of acinar-ductal metaplasia (ADM). In order to further elucidate this model of PDAC development, an extensive expression analysis and molecular characterization of the putative and already established (PanIN) precursor lesions were performed in the Kras(G12D/+) ; Ptf1a-Cre(ex1/+) mouse model and in human tissues, focusing on lineage markers, developmental pathways, cell cycle regulators, apomucins, and stromal activation markers. The results of this study show that areas of ADM are very frequent in the murine and human pancreas and represent regions of increased proliferation of cells with precursor potential. Moreover, atypical flat lesions originating in areas of ADM are the most probable precursors of PDAC in the Kras(G12D/+); Ptf1a-Cre(ex1/+) mice and similar lesions were also found in the pancreas of three patients with a strong family history of PDAC. In conclusion, PDAC development in Kras(G12D/+); Ptf1a-Cre(ex1/+) mice starts from ADM and a similar process might also take place in patients with a strong family history of PDAC.


Asunto(s)
Carcinoma in Situ/patología , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica/patología , Neoplasias Experimentales/patología , Neoplasias Pancreáticas/patología , Lesiones Precancerosas/patología , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Diferenciación Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes ras , Predisposición Genética a la Enfermedad , Herencia , Humanos , Inmunohistoquímica , Metaplasia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Linaje , Fenotipo , Lesiones Precancerosas/genética , Lesiones Precancerosas/metabolismo , Factores de Transcripción/genética
5.
Nat Metab ; 5(12): 2075-2085, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37946085

RESUMEN

The development of single-molecule co-agonists for the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) is considered a breakthrough in the treatment of obesity and type 2 diabetes. But although GIPR-GLP-1R co-agonism decreases body weight with superior efficacy relative to GLP-1R agonism alone in preclinical1-3 and clinical studies4,5, the role of GIP in regulating energy metabolism remains enigmatic. Increasing evidence suggests that long-acting GIPR agonists act in the brain to decrease body weight through the inhibition of food intake3,6-8; however, the mechanisms and neuronal populations through which GIP affects metabolism remain to be identified. Here, we report that long-acting GIPR agonists and GIPR-GLP-1R co-agonists decrease body weight and food intake via inhibitory GABAergic neurons. We show that acyl-GIP decreases body weight and food intake in male diet-induced obese wild-type mice, but not in mice with deletion of Gipr in Vgat(also known as Slc32a1)-expressing GABAergic neurons (Vgat-Gipr knockout). Whereas the GIPR-GLP-1R co-agonist MAR709 leads, in male diet-induced obese wild-type mice, to greater weight loss and further inhibition of food intake relative to a pharmacokinetically matched acyl-GLP-1 control, this superiority over GLP-1 vanishes in Vgat-Gipr knockout mice. Our data demonstrate that long-acting GIPR agonists crucially depend on GIPR signaling in inhibitory GABAergic neurons to decrease body weight and food intake.


Asunto(s)
Diabetes Mellitus Tipo 2 , Masculino , Ratones , Animales , Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Obesidad/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptores Acoplados a Proteínas G , Glucosa , Neuronas GABAérgicas/metabolismo , Ingestión de Alimentos
6.
Methods ; 53(2): 120-35, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20708688

RESUMEN

Model organisms like the mouse are important tools to learn more about gene function in man. Within the last 20 years many mutant mouse lines have been generated by different methods such as ENU mutagenesis, constitutive and conditional knock-out approaches, knock-down, introduction of human genes, and knock-in techniques, thus creating models which mimic human conditions. Due to pleiotropic effects, one gene may have different functions in different organ systems or time points during development. Therefore mutant mouse lines have to be phenotyped comprehensively in a highly standardized manner to enable the detection of phenotypes which might otherwise remain hidden. The German Mouse Clinic (GMC) has been established at the Helmholtz Zentrum München as a phenotyping platform with open access to the scientific community (www.mousclinic.de; [1]). The GMC is a member of the EUMODIC consortium which created the European standard workflow EMPReSSslim for the systemic phenotyping of mouse models (http://www.eumodic.org/[2]).


Asunto(s)
Ratones Mutantes , Fenotipo , Animales , Conducta Animal , Análisis Químico de la Sangre/métodos , Catarata/patología , Pruebas de Función Renal/métodos , Ratones , Ratones Mutantes Neurológicos , Mutagénesis , Dimensión del Dolor/métodos , Dimensión del Dolor/normas , Estándares de Referencia , Urinálisis/métodos
7.
Sci Rep ; 12(1): 19793, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396684

RESUMEN

Gastro-intestinal stromal tumors and acute myeloid leukemia induced by activating stem cell factor receptor tyrosine kinase (KIT) mutations are highly malignant. Less clear is the role of KIT mutations in the context of breast cancer. Treatment success of KIT-induced cancers is still unsatisfactory because of primary or secondary resistance to therapy. Mouse models offer essential platforms for studies on molecular disease mechanisms in basic cancer research. In the course of the Munich N-ethyl-N-nitrosourea (ENU) mutagenesis program a mouse line with inherited polycythemia was established. It carries a base-pair exchange in the Kit gene leading to an amino acid exchange at position 824 in the activation loop of KIT. This KIT variant corresponds to the N822K mutation found in human cancers, which is associated with imatinib-resistance. C3H KitN824K/WT mice develop hyperplasia of interstitial cells of Cajal and retention of ingesta in the cecum. In contrast to previous Kit-mutant models, we observe a benign course of gastrointestinal pathology associated with prolonged survival. Female mutants develop mammary carcinomas at late onset and subsequent lung metastasis. The disease model complements existing oncology research platforms. It allows for addressing the role of KIT mutations in breast cancer and identifying genetic and environmental modifiers of disease progression.


Asunto(s)
Neoplasias de la Mama , Tumores del Estroma Gastrointestinal , Ratones , Femenino , Humanos , Animales , Penetrancia , Ratones Endogámicos C3H , Proteínas Proto-Oncogénicas c-kit/genética , Tumores del Estroma Gastrointestinal/genética , Modelos Animales de Enfermedad , Neoplasias de la Mama/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA