Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 580(7801): 87-92, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238927

RESUMEN

Southern Ocean ecosystems are under pressure from resource exploitation and climate change1,2. Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40°S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.


Asunto(s)
Sistemas de Identificación Animal , Organismos Acuáticos/fisiología , Cambio Climático/estadística & datos numéricos , Conservación de los Recursos Naturales/métodos , Ecosistema , Océanos y Mares , Conducta Predatoria , Animales , Regiones Antárticas , Biodiversidad , Aves , Peces , Cadena Alimentaria , Cubierta de Hielo , Mamíferos , Dinámica Poblacional
2.
Conserv Biol ; : e14345, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145654

RESUMEN

Biodiversity is critical for maintaining ecosystem function but is threatened by increasing anthropogenic pressures. In the Southern Ocean, a highly biologically productive region containing many endemic species, proactive management is urgently needed to mitigate increasing pressures from fishing, climate change, and tourism. Site-based conservation is one important tool for managing the negative impacts of human activities on ecosystems. The Key Biodiversity Area (KBA) Standard is a standardized framework used to define sites vital for the persistence of global biodiversity based on criteria and quantitative thresholds. We used tracking data from 14 species of Antarctic and subantarctic seabirds and pinnipeds from the publicly available Retrospective Analysis of Antarctic Tracking Data (RAATD) data set to define KBAs for a diverse suite of marine predators. We used track2kba, an R package that supports identification of KBAs from telemetry data through identification of highly used habitat areas and estimates of local abundance within sites. We compared abundance estimates at each site with thresholds for KBA criteria A1, B1, and D1 (related to globally threatened species, individual geographically restricted species, and demographic aggregations, respectively). We identified 30 potential KBAs for 13 species distributed throughout the Southern Ocean that were vital for each individual species, population, and life-history stage for which they were determined. These areas were identified as highly used by these populations based on observational data and complement the ongoing habitat modeling and bioregionalization work that has been used to prioritize conservation areas in this region. Although further work is needed to identify potential KBAs based on additional current and future data sets, we highlight the benefits of utilizing KBAs as part of a holistic approach to marine conservation, given their significant value as a global conservation tool.


Ampliación de la conservación oceánica por medio del reconocimiento de áreas importantes de biodiversidad en el Océano Antártico a partir de datos de rastreo de varias especies Resumen La biodiversidad es fundamental para mantener la función de los ecosistemas, pero está amenazada por las crecientes presiones antropogénicas. En el Océano Antártico, una región con mucha producción biológica que contiene numerosas especies endémicas, se necesita urgentemente una gestión proactiva para mitigar las crecientes presiones de la pesca, el cambio climático y el turismo. La conservación basada en el sitio es una herramienta importante para gestionar los efectos negativos de las actividades humanas en los ecosistemas. El Estándar de Áreas Clave para la Biodiversidad (ACB) es un marco estandarizado que se utiliza para definir lugares vitales para la persistencia de la biodiversidad mundial con base en criterios y umbrales cuantitativos. Usamos datos del seguimiento de 14 especies de aves marinas y pinnípedos antárticos y sub­antárticos del conjunto de datos públicos Retrospective Analysis of Antarctic Tracking Data (RAATD) para definir las ACB de un conjunto diverso de depredadores marinos. Utilizamos track2kba, un paquete de R que permite la identificación de ACB a partir de datos telemétricos mediante la identificación de áreas de hábitat altamente utilizadas y estimaciones de abundancia local dentro de los sitios. Comparamos las estimaciones de abundancia en cada lugar con los umbrales de los criterios A1, B1 y D1 de las ACB (relacionados con especies amenazadas a nivel mundial, especies individuales restringidas geográficamente y agregaciones demográficas, respectivamente). Identificamos 30 ACB potenciales para 13 especies distribuidas por todo el Océano Antártico que eran vitales para cada especie individual, población y etapa del ciclo biológico para las que se determinaron. Estas áreas fueron identificadas como muy utilizadas por estas poblaciones con base a datos observacionales y complementan el trabajo en curso de modelos del hábitat y biorregionalización que se ha utilizado para priorizar las áreas de conservación en esta región. Aunque es necesario seguir trabajando para identificar posibles ACB basadas en conjuntos de datos adicionales actuales y futuros, destacamos los beneficios de utilizar las ACB como parte de un enfoque holístico de la conservación marina, dado su importante valor como herramienta de conservación global.

3.
Glob Chang Biol ; 27(20): 5008-5029, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34342929

RESUMEN

Species extinction risk is accelerating due to anthropogenic climate change, making it urgent to protect vulnerable species through legal frameworks in order to facilitate conservation actions that help mitigate risk. Here, we discuss fundamental concepts for assessing climate change risks to species using the example of the emperor penguin (Aptenodytes forsteri), currently being considered for protection under the US Endangered Species Act (ESA). This species forms colonies on Antarctic sea ice, which is projected to significantly decline due to ongoing greenhouse gas (GHG) emissions. We project the dynamics of all known emperor penguin colonies under different GHG emission scenarios using a climate-dependent meta-population model including the effects of extreme climate events based on the observational satellite record of colonies. Assessments for listing species under the ESA require information about how species resiliency, redundancy and representation (3Rs) will be affected by threats within the foreseeable future. Our results show that if sea ice declines at the rate projected by climate models under current energy system trends and policies, the 3Rs would be dramatically reduced and almost all colonies would become quasi-extinct by 2100. We conclude that the species should be listed as threatened under the ESA.


Asunto(s)
Spheniscidae , Animales , Regiones Antárticas , Cambio Climático , Extinción Biológica , Cubierta de Hielo
4.
Glob Chang Biol ; 21(6): 2215-26, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25728986

RESUMEN

The relationship between population structure and demographic history is critical to understanding microevolution and for predicting the resilience of species to environmental change. Using mitochondrial DNA from extant colonies and radiocarbon-dated subfossils, we present the first microevolutionary analysis of emperor penguins (Aptenodytes forsteri) and show their population trends throughout the last glacial maximum (LGM, 19.5-16 kya) and during the subsequent period of warming and sea ice retreat. We found evidence for three mitochondrial clades within emperor penguins, suggesting that they were isolated within three glacial refugia during the LGM. One of these clades has remained largely isolated within the Ross Sea, while the two other clades have intermixed around the coast of Antarctica from Adélie Land to the Weddell Sea. The differentiation of the Ross Sea population has been preserved despite rapid population growth and opportunities for migration. Low effective population sizes during the LGM, followed by a rapid expansion around the beginning of the Holocene, suggest that an optimum set of sea ice conditions exist for emperor penguins, corresponding to available foraging area.


Asunto(s)
Cubierta de Hielo , Refugio de Fauna , Spheniscidae/genética , Animales , Regiones Antárticas , Evolución Biológica , Cambio Climático , ADN Mitocondrial , Fósiles , Filogeografía , Densidad de Población , Spheniscidae/fisiología
5.
Adv Mar Biol ; 69: 15-78, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25358297

RESUMEN

South Georgia and the South Sandwich Islands (SGSSI) are surrounded by oceans that are species-rich, have high levels of biodiversity, important endemism and which also support large aggregations of charismatic upper trophic level species. Spatial management around these islands is complex, particularly in the context of commercial fisheries that exploit some of these living resources. Furthermore, management is especially complicated as local productivity relies fundamentally upon biological production transported from outside the area. The MPA uses practical management boundaries, allowing access for the current legal fisheries for Patagonian toothfish, mackerel icefish and Antarctic krill. Management measures developed as part of the planning process designated the whole SGSSI Maritime Zone as an IUCN Category VI reserve, within which a number of IUCN Category I reserves were identified. Multiple-use zones and temporal closures were also designated. A key multiple-use principle was to identify whether the ecological impacts of a particular fishery threatened either the pelagic or benthic domain.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Islas del Atlántico , Océano Atlántico , Biodiversidad
6.
BMC Genomics ; 14: 52, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23347513

RESUMEN

BACKGROUND: Transcriptomes are powerful resources, providing a window on the expressed portion of the genome that can be generated rapidly and at low cost for virtually any organism. However, because many genes have tissue-specific expression patterns, developing a complete transcriptome usually requires a 'discovery pool' of individuals to be sacrificed in order to harvest mRNA from as many different types of tissue as possible. This hinders transcriptome development in large, charismatic and endangered species, many of which stand the most to gain from such approaches. To circumvent this problem in a model pinniped species, we 454 sequenced cDNA from testis, heart, spleen, intestine, kidney and lung tissues obtained from nine adult male Antarctic fur seals (Arctocephalus gazella) that died of natural causes at Bird Island, South Georgia. RESULTS: After applying stringent quality control criteria based on length and annotation, we obtained 12,397 contigs which, in combination with 454 data previously obtained from skin, gave a total of 23,096 unique contigs. Homology was found to 77.0% of dog (Canis lupus familiaris) transcripts, suggesting that the combined assembly represents a substantial proportion of this species' transcriptome. Moreover, only 0.5% of transcripts revealed sequence similarity to bacteria, implying minimal contamination, and the percentage of transcripts involved in cell death was low at 2.6%. Transcripts with immune-related annotations were almost five-fold enriched relative to skin and represented 13.2% of all spleen-specific contigs. By reference to the dog, we also identified transcripts revealing homology to five class I, ten class II and three class III genes of the Major Histocompatibility Complex and derived the putative genomic distribution of 17,121 contigs, 2,119 in silico mined microsatellites and 9,382 single nucleotide polymorphisms. CONCLUSIONS: Our findings suggest that transcriptome development based on samples collected post mortem may greatly facilitate genomic studies, not only of marine mammals but also more generally of species that are of conservation concern.


Asunto(s)
Organismos Acuáticos/genética , Organismos Acuáticos/inmunología , Lobos Marinos/genética , Lobos Marinos/inmunología , Perfilación de la Expresión Génica , Animales , Autopsia , Biología Computacional , Perros , Marcadores Genéticos/genética , Masculino , Especificidad de Órganos , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
J Exp Biol ; 216(Pt 16): 3175-82, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23661772

RESUMEN

Albatrosses are known to expend only a small amount of energy during flight. The low energy cost of albatross flight has been attributed to energy-efficient gliding (soaring) with sporadic flapping, although little is known about how much time and energy albatrosses expend in flapping versus gliding during cruising flight. Here, we examined the heart rates (used as an instantaneous index of energy expenditure) and flapping activities of free-ranging black-browed albatrosses (Thalassarche melanophrys) to estimate the energy cost of flapping as well as time spent in flapping activities. The heart rate of albatrosses during flight (144 beats min(-1)) was similar to that while sitting on the water (150 beats min(-1)). In contrast, heart rate was much higher during takeoff and landing (ca. 200 beats min(-1)). Heart rate during cruising flight was linearly correlated with the number of wing flaps per minute, suggesting an extra energy burden of flapping. Albatrosses spend only 4.6±1.4% of their time flapping during cruising flight, which was significantly lower than during and shortly after takeoff (9.8±3.5%). Flapping activity, which amounted to just 4.6% of the time in flight, accounted for 13.3% of the total energy expenditure during cruising flight. These results support the idea that albatrosses achieve energy-efficient flight by reducing the time spent in flapping activity, which is associated with high energy expenditure.


Asunto(s)
Aves/fisiología , Metabolismo Energético/fisiología , Vuelo Animal/fisiología , Frecuencia Cardíaca/fisiología , Alas de Animales/fisiología , Aceleración , Animales , Conducta Animal/fisiología , Peso Corporal/fisiología , Electrocardiografía , Océanos y Mares
9.
Ecol Evol ; 13(4): e9903, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37038528

RESUMEN

Animal abundance estimation is increasingly based on drone or aerial survey photography. Manual postprocessing has been used extensively; however, volumes of such data are increasing, necessitating some level of automation, either for complete counting, or as a labour-saving tool. Any automated processing can be challenging when using such tools on species that nest in close formation such as Pygoscelis penguins. We present here a customized CNN-based density map estimation method for counting of penguins from low-resolution aerial photography. Our model, an indirect regression algorithm, performed significantly better in terms of counting accuracy than standard detection algorithm (Faster-RCNN) when counting small objects from low-resolution images and gave an error rate of only 0.8 percent. Density map estimation methods as demonstrated here can vastly improve our ability to count animals in tight aggregations and demonstrably improve monitoring efforts from aerial imagery.

11.
Ecology ; 93(6): 1367-77, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22834377

RESUMEN

As important marine mesopredators and sensitive indicators of Antarctic ecosystem change, penguins have been a major focus of long-term biological research in the Antarctic. However, the vast majority of such studies have been constrained by logistics and relate mostly to the temporal dynamics of individual breeding populations from which regional trends have been inferred, often without regard for the complex spatial heterogeneity of population processes and the underlying environmental conditions. Integrating diverse census data from 70 breeding sites across 31 years in a robust, hierarchical analysis, we find that trends from intensely studied populations may poorly reflect regional dynamics and confuse interpretation of environmental drivers. Results from integrated analyses confirm that Pygoscelis adeliae (Adélie Penguins) are decreasing at almost all locations on the Antarctic Peninsula. Results also resolve previously contradictory studies and unambiguously establish that P. antarctica (Chinstrap Penguins), thought to benefit from decreasing sea ice, are instead declining regionally. In contrast, another open-water species, P. papua (Gentoo Penguin), is increasing in abundance and expanding southward. These disparate population trends accord with recent mechanistic hypotheses of biological change in the Southern Ocean and highlight limitations of the influential but oversimplified "sea ice" hypothesis. Aggregating population data at the regional scale also allows us to quantify rates of regional population change in a way not previously possible.


Asunto(s)
Spheniscidae/fisiología , Animales , Regiones Antárticas , Monitoreo del Ambiente/métodos , Modelos Biológicos , Población
12.
Ecology ; 93(1): 122-30, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22486093

RESUMEN

Ecological niche theory predicts segregation mechanisms that mitigate potential competition between closely related organisms. However, little is known outside the breeding season, when central-place foraging animals may move on larger scales. This study tested for segregation mechanisms within the same 2007 inter-breeding period on three neighboring populations of avian predators from the southern Indian Ocean: Eastern Rockhopper Penguins Eudyptes filholi from Crozet and Kerguelen and Northern Rockhopper Penguins E. moseleyi from Amsterdam. Using state-of-the-art geolocation tracking and stable isotope analysis techniques, we quantified and compared the ecological niches in time, space, and diet. The three populations showed large-scale movements over deep oceanic waters near the Subantarctic Front, with generally little individual variation. The two neighboring populations of Eastern Rockhopper Penguins showed strikingly distinct distribution in space, while foraging in similar habitats and at the same trophic level (crustacean-eaters). In contrast, Northern Rockhoppers showed marked spatial overlap with birds of the sibling Eastern species, but their temporal delay of two months enabled them to effectively avoid significant overlap. Our results highlight parsimonious mechanisms of resource partitioning operating at the population level that may explain how animals from neighboring localities can coexist during the nonbreeding period.


Asunto(s)
Conducta Predatoria/fisiología , Estaciones del Año , Spheniscidae/clasificación , Spheniscidae/fisiología , Animales , Isótopos de Carbono/sangre , Demografía , Isótopos de Nitrógeno/sangre , Océanos y Mares , Especificidad de la Especie , Spheniscidae/sangre , Factores de Tiempo
13.
PLoS One ; 16(3): e0248071, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33662029

RESUMEN

The diet of Antarctic fur seals (Arctocephalus gazella) at South Georgia is dominated by Antarctic krill (Euphausia superba). During the breeding season, foraging trips by lactating female fur seals are constrained by their need to return to land to provision their pups. Post-breeding, seals disperse in order to feed and recover condition; estimates indicate c.70% of females remain near to South Georgia, whilst others head west towards the Patagonian Shelf or south to the ice-edge. The krill fishery at South Georgia operates only during the winter, providing the potential for fur seal: fishery interaction during these months. Here we use available winter (May to September) tracking data from Platform Terminal Transmitter (PTT) tags deployed on female fur seals at Bird Island, South Georgia. We develop habitat models describing their distribution during the winters of 1999 and 2003 with the aim of visualising and quantifying the degree of spatial overlap between female fur seals and krill harvesting in South Georgia waters. We show that spatial distribution of fur seals around South Georgia is extensive, and that the krill fishery overlaps with small, highly localised areas of available fur seal habitat. From these findings we discuss the implications for management, and future work.


Asunto(s)
Euphausiacea/fisiología , Explotaciones Pesqueras , Lobos Marinos/fisiología , Distribución Animal , Migración Animal , Animales , Islas del Atlántico , Océano Atlántico , Cruzamiento , Ecosistema , Femenino , Islas , Masculino , Estaciones del Año
14.
Sci Data ; 7(1): 94, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188863

RESUMEN

The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.

15.
Trends Ecol Evol ; 34(5): 459-473, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30879872

RESUMEN

There have been efforts around the globe to track individuals of many marine species and assess their movements and distribution, with the putative goal of supporting their conservation and management. Determining whether, and how, tracking data have been successfully applied to address real-world conservation issues is, however, difficult. Here, we compile a broad range of case studies from diverse marine taxa to show how tracking data have helped inform conservation policy and management, including reductions in fisheries bycatch and vessel strikes, and the design and administration of marine protected areas and important habitats. Using these examples, we highlight pathways through which the past and future investment in collecting animal tracking data might be better used to achieve tangible conservation benefits.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Ecosistema
16.
PLoS One ; 13(6): e0197767, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29870541

RESUMEN

Leopard seals are an important Antarctic apex predator that can affect marine ecosystems through local predation. Here we report on the successful use of micro geolocation logging sensor tags to track the movements, and activity, of four leopard seals for trips of between 142-446 days including one individual in two separate years. Whilst the sample size is small the results represent an advance in our limited knowledge of leopard seals. We show the longest periods of tracking of leopard seals' migratory behaviour between the pack ice, close to the Antarctic continent, and the sub-Antarctic island of South Georgia. It appears that these tracked animals migrate in a directed manner towards Bird Island and, during their residency, use this as a central place for foraging trips as well as exploiting the local penguin and seal populations. Movements to the South Orkney Islands were also recorded, similar to those observed in other predators in the region including the krill fishery. Analysis of habitat associations, taking into account location errors, indicated the tracked seals had an affinity for shallow shelf water and regions of sea ice. Wet and dry sensors revealed that seals hauled out for between 22 and 31% of the time with maximum of 74 hours and a median of between 9 and 11 hours. The longest period a seal remained in the water was between 13 and 25 days. Fitting GAMMs showed that haul out rates changed throughout the year with the highest values occurring during the summer which has implications for visual surveys. Peak haul out occurred around midday for the months between October and April but was more evenly spread across the day between May and September. The seals' movements between, and behaviour within, areas important to breeding populations of birds and other seals, coupled with the dynamics of the region's fisheries, shows an understanding of leopard seal ecology is vital in the management of the Southern Ocean resources.


Asunto(s)
Migración Animal/fisiología , Lobos Marinos/fisiología , Conducta Predatoria/fisiología , Phocidae/fisiología , Animales , Regiones Antárticas , Ecosistema , Explotaciones Pesqueras , Cubierta de Hielo , Dinámica Poblacional , Estaciones del Año
17.
Ecol Evol ; 8(7): 3660-3674, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29686847

RESUMEN

Penguins are a monophyletic group in which many species are found breeding sympatrically, raising questions regarding how these species coexist successfully. Here, the isotopic niche of three sympatric pygoscelid penguin species was investigated at Powell Island, South Orkney Islands, during two breeding seasons (austral summers 2013-2014 and 2015-2016). Measurements of carbon (δ13C) and nitrogen (δ15N) stable isotope ratios were obtained from blood (adults) or feather (chicks) samples collected from Adélie Pygoscelis adeliae, chinstrap P. antarctica, and gentoo P. papua penguins. Isotopic niche regions (a proxy for the realized trophic niches) were computed to provide estimates of the trophic niche width of the studied species during the breeding season. The isotopic niche regions of adults of all three species were similar, but gentoo chicks had noticeably wider isotopic niches than the chicks of the other two species. Moderate to strong overlap in isotopic niche among species was found during each breeding season and for both age groups, suggesting that the potential for competition for shared food sources was similar during the two study years, although the actual level of competition could not be determined owing to the lack of data on resource abundance. Clear interannual shifts in isotopic niche were seen in all three species, though of lower amplitude for adult chinstrap penguins. These shifts were due to variation in carbon, but not nitrogen, isotopic ratios, which could indicate either a change in isotopic signature of their prey or a switch to an alternative food web. The main conclusions of this study are that (1) there is a partial overlap in the isotopic niches of these three congeneric species and that (2) they responded similarly to changes that likely occurred at the base of their food chain between the 2 years of the study.

18.
Ecol Evol ; 8(21): 10520-10529, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30464824

RESUMEN

AIM: To provide a method of analyzing penguin tracking data to identify priority at-sea areas for seabird conservation (marine IBAs), based on pre-existing approaches for flying seabirds but revised according to the specific ecology of Pygoscelis penguin species. LOCATION: Waters around the Antarctic Peninsula, South Shetland, and South Orkney archipelagos (FAO Subareas 48.1 and 48.2). METHODS: We made key improvements to the pre-existing protocol for identifying marine IBAs that include refining the track interpolation method and revision of parameters for the kernel analysis (smoothing factor and utilization distribution) using sensitivity tests. We applied the revised method to 24 datasets of tracking data on penguins (three species, seven colonies, and three different breeding stages-incubation, brood, and crèche). RESULTS: We identified five new marine IBAs for seabirds in the study area, estimated to hold ca. 600,000 adult penguins. MAIN CONCLUSIONS: The results demonstrate the efficacy of a new method for the designation of a network of marine IBAs in Antarctic waters for penguins based on tracking data, which can contribute to an evidence-based, precautionary, management framework for krill fisheries.

19.
Proc Biol Sci ; 274(1629): 3057-67, 2007 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-17939986

RESUMEN

Determining how climate fluctuations affect ocean ecosystems requires an understanding of how biological and physical processes interact across a wide range of scales. Here we examine the role of physical and biological processes in generating fluctuations in the ecosystem around South Georgia in the South Atlantic sector of the Southern Ocean. Anomalies in sea surface temperature (SST) in the South Pacific sector of the Southern Ocean have previously been shown to be generated through atmospheric teleconnections with El Niño Southern Oscillation (ENSO)-related processes. These SST anomalies are propagated via the Antarctic Circumpolar Current into the South Atlantic (on time scales of more than 1 year), where ENSO and Southern Annular Mode-related atmospheric processes have a direct influence on short (less than six months) time scales. We find that across the South Atlantic sector, these changes in SST, and related fluctuations in winter sea ice extent, affect the recruitment and dispersal of Antarctic krill. This oceanographically driven variation in krill population dynamics and abundance in turn affects the breeding success of seabird and marine mammal predators that depend on krill as food. Such propagating anomalies, mediated through physical and trophic interactions, are likely to be an important component of variation in ocean ecosystems and affect responses to longer term change. Population models derived on the basis of these oceanic fluctuations indicate that plausible rates of regional warming of 1oC over the next 100 years could lead to more than a 95% reduction in the biomass and abundance of krill across the Scotia Sea by the end of the century.


Asunto(s)
Clima , Ecosistema , Animales , Regiones Antárticas , Euphausiacea/fisiología , Lobos Marinos/fisiología , Océanos y Mares , Dinámica Poblacional , Conducta Predatoria/fisiología , Temperatura
20.
PLoS One ; 12(9): e0184114, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28910405

RESUMEN

Understanding the mechanisms that link prey availability to predator behaviour and population change is central to projecting how a species may respond to future environmental pressures. We documented the behavioural responses and breeding investment of macaroni penguins Eudyptes chrysolophus across five breeding seasons where local prey density changed by five-fold; from very low to highly abundant. When prey availability was low, foraging trips were significantly longer and extended overnight. Birds also foraged farther from the colony, potentially in order to reach more distant foraging grounds and allow for increased search times. These extended foraging trips were also linked to a marked decrease in fledgling weights, most likely associated with reduced rates of provisioning. Furthermore, by comparing our results with previous work on this population, it appears that lowered first-year survival rates associated, at least partially, with fledging masses were also evident for this cohort. This study integrates a unique set of prey density, predator behaviour and predator breeding investment data to highlight a possible behavioural mechanism linking perturbations in prey availability to population demography.


Asunto(s)
Organismos Acuáticos/fisiología , Cadena Alimentaria , Conducta Predatoria/fisiología , Conducta Sexual Animal/fisiología , Spheniscidae/fisiología , Animales , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA