Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 512(7514): 324-7, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25043048

RESUMEN

Monoallelic point mutations of isocitrate dehydrogenase type 1 (IDH1) are an early and defining event in the development of a subgroup of gliomas and other types of tumour. They almost uniformly occur in the critical arginine residue (Arg 132) in the catalytic pocket, resulting in a neomorphic enzymatic function, production of the oncometabolite 2-hydroxyglutarate (2-HG), genomic hypermethylation, genetic instability and malignant transformation. More than 70% of diffuse grade II and grade III gliomas carry the most frequent mutation, IDH1(R132H) (ref. 3). From an immunological perspective, IDH1(R132H) represents a potential target for immunotherapy as it is a tumour-specific potential neoantigen with high uniformity and penetrance expressed in all tumour cells. Here we demonstrate that IDH1(R132H) contains an immunogenic epitope suitable for mutation-specific vaccination. Peptides encompassing the mutated region are presented on major histocompatibility complexes (MHC) class II and induce mutation-specific CD4(+) T-helper-1 (TH1) responses. CD4(+) TH1 cells and antibodies spontaneously occurring in patients with IDH1(R132H)-mutated gliomas specifically recognize IDH1(R132H). Peptide vaccination of mice devoid of mouse MHC and transgenic for human MHC class I and II with IDH1(R132H) p123-142 results in an effective MHC class II-restricted mutation-specific antitumour immune response and control of pre-established syngeneic IDH1(R132H)-expressing tumours in a CD4(+) T-cell-dependent manner. As IDH1(R132H) is present in all tumour cells of these slow-growing gliomas, a mutation-specific anti-IDH1(R132H) vaccine may represent a viable novel therapeutic strategy for IDH1(R132H)-mutated tumours.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Glioma/inmunología , Glioma/terapia , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/inmunología , Proteínas Mutantes/inmunología , Animales , Especificidad de Anticuerpos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Femenino , Glioma/enzimología , Glioma/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Inmunidad Humoral , Inmunoterapia/métodos , Masculino , Ratones , Proteínas Mutantes/genética , Mutación , Linfocitos T Colaboradores-Inductores/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Proc Natl Acad Sci U S A ; 114(46): E9942-E9951, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29093164

RESUMEN

Immunotherapies, particularly checkpoint inhibitors, have set off a revolution in cancer therapy by releasing the power of the immune system. However, only little is known about the antigens that are essentially presented on cancer cells, capable of exposing them to immune cells. Large-scale HLA ligandome analysis has enabled us to exhaustively characterize the immunopeptidomic landscape of epithelial ovarian cancers (EOCs). Additional comparative profiling with the immunopeptidome of a variety of benign sources has unveiled a multitude of ovarian cancer antigens (MUC16, MSLN, LGALS1, IDO1, KLK10) to be presented by HLA class I and class II molecules exclusively on ovarian cancer cells. Most strikingly, ligands derived from mucin 16 and mesothelin, a molecular axis of prognostic importance in EOC, are prominent in a majority of patients. Differential gene-expression analysis has allowed us to confirm the relevance of these targets for EOC and further provided important insights into the relationship between gene transcript levels and HLA ligand presentation.


Asunto(s)
Presentación de Antígeno/inmunología , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/metabolismo , Antígeno Ca-125/inmunología , Carcinoma Epitelial de Ovario , Femenino , Proteínas Ligadas a GPI/inmunología , Galectina 1/inmunología , Regulación Neoplásica de la Expresión Génica , Antígenos HLA-DR/inmunología , Antígenos HLA-DR/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Inmunoterapia , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Calicreínas/inmunología , Ligandos , Glicoproteínas de Membrana/análisis , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/inmunología , Mesotelina , Neoplasias Glandulares y Epiteliales/inmunología , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/patología , Vacunación
3.
J Immunol ; 195(9): 4106-16, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26401002

RESUMEN

HLA-F adjacent transcript 10 (FAT10) is a cytokine-inducible ubiquitin-like modifier that is highly expressed in the thymus and directly targets FAT10-conjugated proteins for degradation by the proteasome. High expression of FAT10 in the mouse thymus could be assigned to strongly autoimmune regulator-expressing, mature medullary thymic epithelial cells, which play a pivotal role in negative selection of T cells. Also in the human thymus, FAT10 is localized in the medulla but not the cortex. TCR Vß-segment screening revealed a changed T cell repertoire in FAT10-deficient mice. Analysis of five MHC class I- and II-restricted TCR-transgenic mice demonstrated an altered thymic negative selection in FAT10-deficient mice. Furthermore, the repertoire of peptides eluted from MHC class I molecules was influenced by FAT10 expression. Hence, we identified FAT10 as a novel modifier of thymic Ag presentation and epitope-dependent elimination of self-reactive T cells, which may explain why the fat10 gene could recently be linked to enhanced susceptibility to virus-triggered autoimmune diabetes.


Asunto(s)
Células Epiteliales/inmunología , Linfocitos T/inmunología , Timo/inmunología , Ubiquitinas/fisiología , Animales , Presentación de Antígeno , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/fisiología , Timo/citología
4.
J Hepatol ; 65(4): 849-855, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27397612

RESUMEN

BACKGROUND & AIMS: We report a novel experimental immunotherapeutic approach in a patient with metastatic intrahepatic cholangiocarcinoma. In the 5year course of the disease, the initial tumor mass, two local recurrences and a lung metastasis were surgically removed. Lacking alternative treatment options, aiming at the induction of anti-tumor T cells responses, we initiated a personalized multi-peptide vaccination, based on in-depth analysis of tumor antigens (immunopeptidome) and sequencing. METHODS: Tumors were characterized by immunohistochemistry, next-generation sequencing and mass spectrometry of HLA ligands. RESULTS: Although several tumor-specific neo-epitopes were predicted in silico, none could be validated by mass spectrometry. Instead, a personalized multi-peptide vaccine containing non-mutated tumor-associated epitopes was designed and applied. Immunomonitoring showed vaccine-induced T cell responses to three out of seven peptides administered. The pulmonary metastasis resected after start of vaccination showed strong immune cell infiltration and perforin positivity, in contrast to the previous lesions. The patient remains clinically healthy, without any radiologically detectable tumors since March 2013 and the vaccination is continued. CONCLUSIONS: This remarkable clinical course encourages formal clinical studies on adjuvant personalized peptide vaccination in cholangiocarcinoma. LAY SUMMARY: Metastatic cholangiocarcinomas, cancers that originate from the liver bile ducts, have very limited treatment options and a fatal prognosis. We describe a novel therapeutic approach in such a patient using a personalized multi-peptide vaccine. This vaccine, developed based on the characterization of the patient's tumor, evoked detectable anti-tumor immune responses, associating with long-term tumor-free survival.


Asunto(s)
Colangiocarcinoma , Neoplasias de los Conductos Biliares , Vacunas contra el Cáncer , Humanos , Recurrencia Local de Neoplasia , Vacunas de Subunidad
5.
J Neurooncol ; 111(3): 285-94, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23263746

RESUMEN

Glioblastoma multiforme is the most frequent and most malignant primary brain tumor with poor prognosis despite surgical removal and radio-chemotherapy. In this setting, immunotherapeutical strategies have great potential, but the reported repertoire of tumor associated antigens is only for HLA-A 02 positive tumors. We describe the first analysis of HLA-peptide presentation patterns in HLA-A 02 negative glioma tissue combined with gene expression profiling of the tumor samples by oligonucleotide microarrays. We identified numerous candidate peptides for immunotherapy. These are peptides derived from proteins with a well-described role in glioma tumor biology and suitable gene expression profiles such as PTPRZ1, EGFR, SEC61G and TNC. Information obtained from complementary analyses of HLA-A 02 negative tumors not only contributes to the discovery of novel shared glioma antigens, but most importantly provides the opportunity to tailor a patient-individual cocktail of tumor-associated peptides for a personalized, targeted immunotherapeutic approach in HLA-A 02 negative patients.


Asunto(s)
Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica/fisiología , Glioblastoma/patología , Antígenos HLA/metabolismo , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/metabolismo , Receptores ErbB/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Glioblastoma/clasificación , Glioblastoma/metabolismo , Humanos , Ligandos , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Canales de Translocación SEC , Espectrometría de Masas en Tándem
7.
J Immunother Cancer ; 9(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34599019

RESUMEN

BACKGROUND: Atypical teratoid/rhabdoid tumors (AT/RT) are highly aggressive CNS tumors of infancy and early childhood. Hallmark is the surprisingly simple genome with inactivating mutations or deletions in the SMARCB1 gene as the oncogenic driver. Nevertheless, AT/RTs are infiltrated by immune cells and even clonally expanded T cells. However, it is unclear which epitopes T cells might recognize on AT/RT cells. METHODS: Here, we report a comprehensive mass spectrometry (MS)-based analysis of naturally presented human leukocyte antigen (HLA) class I and class II ligands on 23 AT/RTs. MS data were validated by matching with a human proteome dataset and exclusion of peptides that are part of the human benignome. Cryptic peptide ligands were identified using Peptide-PRISM. RESULTS: Comparative HLA ligandome analysis of the HLA ligandome revealed 55 class I and 139 class II tumor-exclusive peptides. No peptide originated from the SMARCB1 region. In addition, 61 HLA class I tumor-exclusive peptide sequences derived from non-canonically translated proteins. Combination of peptides from natural and cryptic class I and class II origin gave optimal representation of tumor cell compartments. Substantial overlap existed with the cryptic immunopeptidome of glioblastomas, but no concordance was found with extracranial tumors. More than 80% of AT/RT exclusive peptides were able to successfully prime CD8+ T cells, whereas naturally occurring memory responses in AT/RT patients could only be detected for class II epitopes. Interestingly, >50% of AT/RT exclusive class II ligands were also recognized by T cells from glioblastoma patients but not from healthy donors. CONCLUSIONS: These findings highlight that AT/RTs, potentially paradigmatic for other pediatric tumors with a low mutational load, present a variety of highly immunogenic HLA class I and class II peptides from canonical as well as non-canonical protein sources. Inclusion of such cryptic peptides into therapeutic vaccines would enable an optimized mapping of the tumor cell surface, thereby reducing the likelihood of immune evasion.


Asunto(s)
Neoplasias del Sistema Nervioso Central/inmunología , Péptidos/inmunología , Tumor Rabdoide/inmunología , Adolescente , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/terapia , Niño , Preescolar , Femenino , Antígenos HLA/genética , Antígenos HLA/inmunología , Antígenos HLA/metabolismo , Humanos , Inmunohistoquímica , Inmunoterapia , Masculino , Espectrometría de Masas , Oncogenes , Péptidos/metabolismo , Péptidos Cíclicos , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/terapia
8.
Cancer Immunol Res ; 7(4): 600-608, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30894379

RESUMEN

Foxp3+ regulatory T cells (Tregs) sustain immune homeostasis and may contribute to immune escape in malignant disease. As a prerequisite for developing immunologic approaches in cancer therapy, it is necessary to understand the ontogeny and the antigenic specificities of tumor-infiltrating Tregs. We addressed this question by using a λ-MYC transgenic mouse model of endogenously arising B-cell lymphoma, which mirrors key features of human Burkitt lymphoma. We show that Foxp3+ Tregs suppress antitumor responses in endogenous lymphoma. Ablation of Foxp3+ Tregs significantly delayed tumor development. The ratio of Treg to effector T cells was elevated in growing tumors, which could be ascribed to differential proliferation. The Tregs detected were mainly natural Tregs that apparently recognized self-antigens. We identified MHC class II-restricted nonmutated self-epitopes, which were more prevalent in lymphoma than in normal B cells and could be recognized by Tregs. These epitopes were derived from proteins that are associated with cellular processes related to malignancy and may be overexpressed in the tumor.


Asunto(s)
Linfoma de Células B/inmunología , Linfocitos T Reguladores/inmunología , Escape del Tumor , Animales , Antígenos/inmunología , Línea Celular Tumoral , Ratones Endogámicos C57BL , Ratones Transgénicos , Péptidos/inmunología
9.
Genome Med ; 11(1): 28, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31039795

RESUMEN

BACKGROUND: Although mutated HLA ligands are considered ideal cancer-specific immunotherapy targets, evidence for their presentation is lacking in hepatocellular carcinomas (HCCs). Employing a unique multi-omics approach comprising a neoepitope identification pipeline, we assessed exome-derived mutations naturally presented as HLA class I ligands in HCCs. METHODS: In-depth multi-omics analyses included whole exome and transcriptome sequencing to define individual patient-specific search spaces of neoepitope candidates. Evidence for the natural presentation of mutated HLA ligands was investigated through an in silico pipeline integrating proteome and HLA ligandome profiling data. RESULTS: The approach was successfully validated in a state-of-the-art dataset from malignant melanoma, and despite multi-omics evidence for somatic mutations, mutated naturally presented HLA ligands remained elusive in HCCs. An analysis of extensive cancer datasets confirmed fundamental differences of tumor mutational burden in HCC and malignant melanoma, challenging the notion that exome-derived mutations contribute relevantly to the expectable neoepitope pool in malignancies with only few mutations. CONCLUSIONS: This study suggests that exome-derived mutated HLA ligands appear to be rarely presented in HCCs, inter alia resulting from a low mutational burden as compared to other malignancies such as malignant melanoma. Our results therefore demand widening the target scope for personalized immunotherapy beyond this limited range of mutated neoepitopes, particularly for malignancies with similar or lower mutational burden.


Asunto(s)
Antígenos de Neoplasias/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Transcriptoma , Anciano , Anciano de 80 o más Años , Antígenos de Neoplasias/metabolismo , Carcinoma Hepatocelular/inmunología , Exoma , Femenino , Genómica/métodos , Humanos , Neoplasias Hepáticas/inmunología , Masculino , Persona de Mediana Edad , Tasa de Mutación
10.
Elife ; 62017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28425917

RESUMEN

Recently, we revealed that TAPBPR is a peptide exchange catalyst that is important for optimal peptide selection by MHC class I molecules. Here, we asked whether any other co-factors associate with TAPBPR, which would explain its effect on peptide selection. We identify an interaction between TAPBPR and UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1), a folding sensor in the calnexin/calreticulin quality control cycle that is known to regenerate the Glc1Man9GlcNAc2 moiety on glycoproteins. Our results suggest the formation of a multimeric complex, dependent on a conserved cysteine at position 94 in TAPBPR, in which TAPBPR promotes the association of UGT1 with peptide-receptive MHC class I molecules. We reveal that the interaction between TAPBPR and UGT1 facilities the reglucosylation of the glycan on MHC class I molecules, promoting their recognition by calreticulin. Our results suggest that in addition to being a peptide editor, TAPBPR improves peptide optimisation by promoting peptide-receptive MHC class I molecules to associate with the peptide-loading complex.


Asunto(s)
Presentación de Antígeno , Glucosiltransferasas/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , Línea Celular , Humanos , Mapeo de Interacción de Proteínas , Multimerización de Proteína
11.
Elife ; 42015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26439010

RESUMEN

Our understanding of the antigen presentation pathway has recently been enhanced with the identification that the tapasin-related protein TAPBPR is a second major histocompatibility complex (MHC) class I-specific chaperone. We sought to determine whether, like tapasin, TAPBPR can also influence MHC class I peptide selection by functioning as a peptide exchange catalyst. We show that TAPBPR can catalyse the dissociation of peptides from peptide-MHC I complexes, enhance the loading of peptide-receptive MHC I molecules, and discriminate between peptides based on affinity in vitro. In cells, the depletion of TAPBPR increased the diversity of peptides presented on MHC I molecules, suggesting that TAPBPR is involved in restricting peptide presentation. Our results suggest TAPBPR binds to MHC I in a peptide-receptive state and, like tapasin, works to enhance peptide optimisation. It is now clear there are two MHC class I specific peptide editors, tapasin and TAPBPR, intimately involved in controlling peptide presentation to the immune system.


Asunto(s)
Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , Antígenos/metabolismo , Línea Celular , Humanos , Péptidos/metabolismo , Unión Proteica
12.
Methods Mol Biol ; 960: 159-168, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23329486

RESUMEN

Major histocompatibility complex (MHC) class I peptide motifs are used on a regular basis to identify and predict MHC class I ligands and CD8(+) T-cell epitopes. This approach is above all an invaluable tool for the identification of disease-associated epitopes. As a matter of fact, the vast majority of T-cell epitopes discovered during the past two decades was identified by means of epitope prediction. Here we describe the steps which are necessary to establish MHC class I peptide motifs and to compose a reliable scoring matrix for epitope prediction. As an example, a scoring matrix for the prediction of HLA-B*35-presented T-cell epitopes will be developed by examining the characteristics of 76 naturally presented HLA ligands.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/química , Fragmentos de Péptidos/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA