Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 323(3): R310-R318, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35700204

RESUMEN

Astronauts frequently report microgravity-induced back pain, which is generally more pronounced in the beginning of a spaceflight. The dry immersion (DI) model reproduces the early effects of microgravity in terms of global support unloading and fluid shift, both of which are involved in back pain pathogenesis. Here, we assessed spinal changes induced by exposure to 5 days of strict DI in 18 healthy men (25-43-yr old) with (n = 9) or without (n = 9) thigh cuffs countermeasure. Intervertebral disk (IVD) height, spinal cord position, and apparent diffusion coefficient (ADC; reflecting global water motion) were measured using magnetic resonance imaging before and after DI. After DI, IVD height increased in thoracic (+3.3 ± 0.8 mm; C7-T12) and lumbar (+4.5 ± 0.4 mm; T12-L5) regions but not in the cervical region (C2-C7) of the spine. An increase in ADC after DI was observed at the L1 (∼6% increase, from 3.2 to 3.4 × 10-3 mm2/s; P < 0.001) and L2 (∼3% increase, from 3.4 to 3.5 × 10-3 mm2/s; P = 0.005) levels. There was no effect of thigh cuffs on spinal parameters. This change in IVD after DI follows the same "gradient" pattern of height increase from the cervical to the lumbar region as observed after bed rest and spaceflight. The increase in ADC at L1 level positively correlated with reported back pain. These findings emphasize the utility of the DI model for studying early spinal changes observed in microgravity.


Asunto(s)
Inmersión , Disco Intervertebral , Dolor de Espalda/patología , Humanos , Disco Intervertebral/diagnóstico por imagen , Vértebras Lumbares/patología , Región Lumbosacra/patología , Región Lumbosacra/fisiología , Imagen por Resonancia Magnética/métodos , Masculino
2.
FASEB J ; 34(11): 14920-14929, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32918768

RESUMEN

The objective of the present study was to determine the effects of dry immersion, an innovative ground-based human model of simulated microgravity and extreme physical inactivity, on iron homeostasis and distribution. Twenty young healthy men were recruited and submitted to 5 days of dry immersion (DI). Fasting blood samples and MRI were performed before and after DI exposure to assess iron status, as well as hematological responses. DI increased spleen iron concentrations (SIC), whereas hepatic iron store (HIC) was not affected. Spleen iron sequestration could be due to the concomitant increase in serum hepcidin levels (P < .001). Increased serum unconjugated bilirubin, as well as the rise of serum myoglobin levels support that DI may promote hemolysis and myolysis. These phenomena could contribute to the concomitant increase of serum iron and transferrin saturation levels (P < .001). As HIC remained unchanged, increased serum hepcidin levels could be due both to higher transferrin saturation level, and to low-grade pro-inflammatory as suggested by the significant rise of serum ferritin and haptoglobin levels after DI (P = .003 and P = .003, respectively). These observations highlight the need for better assessment of iron metabolism in bedridden patients, and an optimization of the diet currently proposed to astronauts.


Asunto(s)
Hierro/metabolismo , Simulación de Ingravidez/efectos adversos , Adulto , Reposo en Cama/efectos adversos , Bilirrubina/sangre , Ferritinas/sangre , Hepcidinas/sangre , Humanos , Inmersión , Hígado/metabolismo , Masculino , Mioglobina/sangre , Bazo/metabolismo , Transferrina/análisis , Simulación de Ingravidez/métodos
3.
Int J Mol Sci ; 21(11)2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466473

RESUMEN

Most astronauts experience back pain after spaceflight, primarily located in the lumbar region. Intervertebral disc herniations have been observed after real and simulated microgravity. Spinal deconditioning after exposure to microgravity has been described, but the underlying mechanisms are not well understood. The dry immersion (DI) model of microgravity was used with eighteen male volunteers. Half of the participants wore thigh cuffs as a potential countermeasure. The spinal changes and intervertebral disc (IVD) content changes were investigated using magnetic resonance imaging (MRI) analyses with T1-T2 mapping sequences. IVD water content was estimated by the apparent diffusion coefficient (ADC), with proteoglycan content measured using MRI T1-mapping sequences centered in the nucleus pulposus. The use of thigh cuffs had no effect on any of the spinal variables measured. There was significant spinal lengthening for all of the subjects. The ADC and IVD proteoglycan content both increased significantly with DI (7.34 ± 2.23% and 10.09 ± 1.39%, respectively; mean ± standard deviation), p < 0.05). The ADC changes suggest dynamic and rapid water diffusion inside IVDs, linked to gravitational unloading. Further investigation is needed to determine whether similar changes occur in the cervical IVDs. A better understanding of the mechanisms involved in spinal deconditioning with spaceflight would assist in the development of alternative countermeasures to prevent IVD herniation.


Asunto(s)
Dolor de Espalda/prevención & control , Vendajes de Compresión , Disco Intervertebral/metabolismo , Proteoglicanos/metabolismo , Ingravidez/efectos adversos , Adulto , Dolor de Espalda/etiología , Agua Corporal/metabolismo , Humanos , Disco Intervertebral/diagnóstico por imagen , Región Lumbosacra/diagnóstico por imagen , Masculino , Muslo/irrigación sanguínea , Vasoconstricción
4.
J Physiol ; 595(13): 4301-4315, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28326563

RESUMEN

KEY POINTS: Our study contributes to the characterization of muscle loss and weakness processes induced by a sedentary life style, chronic hypoactivity, clinical bed rest, immobilization and microgravity. This study, by bringing together integrated and cellular evaluation of muscle structure and function, identifies the early functional markers and biomarkers of muscle deconditioning. Three days of muscle disuse in healthy adult subjects is sufficient to significantly decrease muscle mass, tone and force, and to induce changes in function relating to a weakness in aerobic metabolism and muscle fibre denervation. The outcomes of this study should be considered in the development of an early muscle loss prevention programme and/or the development of pre-conditioning programmes required before clinical bed rest, immobilization and spaceflight travel. ABSTRACT: Microgravity and hypoactivity are associated with skeletal muscle deconditioning. The decrease of muscle mass follows an exponential decay, with major changes in the first days. The purpose of the study was to dissect out the effects of a short-term 3-day dry immersion (DI) on human quadriceps muscle function and structure. The DI model, by suppressing all support zones, accurately reproduces the effects of microgravity. Twelve healthy volunteers (32 ± 5 years) completed 3 days of DI. Muscle function was investigated through maximal voluntary contraction (MVC) tests and muscle viscoelasticity. Structural experiments were performed using MRI analysis and invasive experiments on muscle fibres. Our results indicated a significant 9.1% decrease of the normalized MVC constant (P = 0.048). Contraction and relaxation modelization kinetics reported modifications related to torque generation (kACT  = -29%; P = 0.014) and to the relaxation phase (kREL  = +34%; P = 0.040) after 3 days of DI. Muscle viscoelasticity was also altered. From day one, rectus femoris stiffness and tone decreased by, respectively, 7.3% (P = 0.002) and 10.2% (P = 0.002), and rectus femoris elasticity decreased by 31.5% (P = 0.004) after 3 days of DI. At the cellular level, 3 days of DI translated into a significant atrophy of type I muscle fibres (-10.6 ± 12.1%, P = 0.027) and an increased proportion of hybrid, type I/IIX fibre co-expression. Finally, we report an increase (6-fold; P = 0.002) in NCAM+ muscle fibres, showing an early denervation process. This study is the first to report experiments performed in Europe investigating human short-term DI-induced muscle adaptations, and contributes to deciphering the early changes and biomarkers of skeletal muscle deconditioning.


Asunto(s)
Contracción Isométrica , Músculo Esquelético/fisiología , Ingravidez/efectos adversos , Adulto , Elasticidad , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miosinas/metabolismo
5.
J Man Manip Ther ; 32(1): 28-50, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37671460

RESUMEN

OBJECTIVE: The aim of this systematic review was to update the current level of evidence for spinal manipulation in influencing various biochemical markers in healthy and/or symptomatic population. METHODS: This is a systematic review update. Various databases were searched (inception till May 2023) and fifteen trials (737 participants) that met the inclusion criteria were included in the review. Two authors independently screened, extracted and assessed the risk of bias in included studies. Outcome measure data were synthesized using standard mean differences and meta-analysis for the primary outcome (biochemical markers). The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) was used for assessing the quality of the body of evidence for each outcome of interest. RESULTS: There was low-quality evidence that spinal manipulation influenced various biochemical markers (not pooled). There was low-quality evidence of significant difference that spinal manipulation is better (SMD -0.42, 95% CI - 0.74 to -0.1) than control in eliciting changes in cortisol levels immediately after intervention. Low-quality evidence further indicated (not pooled) that spinal manipulation can influence inflammatory markers such as interleukins levels post-intervention. There was also very low-quality evidence that spinal manipulation does not influence substance-P, neurotensin, oxytocin, orexin-A, testosterone and epinephrine/nor-epinephrine. CONCLUSION: Spinal manipulation may influence inflammatory and cortisol post-intervention. However, the wider prediction intervals in most outcome measures point to the need for future research to clarify and establish the clinical relevance of these changes.


Asunto(s)
Manipulación Espinal , Humanos , Hidrocortisona , Neurotensina , Biomarcadores , Epinefrina
6.
Front Physiol ; 10: 575, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31164833

RESUMEN

Confinement experiments are essential to prepare long-term space exploration. The 180-day Chinese CELSS (Controlled Ecological Life Support System) study is unique in its design, including a closed-loop system and mid-mission simulation of Mars-like day-night cycle of 24 h 40 min for 36 days (days 72-108). Our aim was to study physiological and psychological consequences of this confinement in four healthy volunteers (one female). CELSS platform consisted of six interconnected modules including four greenhouses. Life support systems were controlled automatically. Body composition, fluid compartments, metabolic state, heart, large vessels, endothelial function, and muscle tone were studied using biological, functional, and/or morphological measurements. Behavioral activities were studied by ethological monitoring; psychological state was assessed by questionnaires. Body weight decreased by ∼2 kg mostly due to lean mass loss. Plasma volume and volume-regulating hormones were mostly stable. Carotid intima-media thickness (IMT) increased by 10-15%. Endothelium-dependent vasodilation decreased. Masseter tone increased by 6-14% suggesting stress, whereas paravertebral muscle tone diminished by 10 ± 6%. Behavioral flow reflecting global activity decreased 1.5- to 2-fold after the first month. Psychological questionnaires revealed decrease in hostility and negative emotions but increase in emotional adaptation suggesting boredom and monotony. One subject was clearly different with lower fitness, higher levels of stress and anxiety, and somatic signs as back pain, peak in masseter tone, increased blood cortisol and C-reactive protein. Comparison of CELSS experiment with Mars500 confinement program suggests the need for countermeasures to prevent increased IMT and endothelial deconditioning. Daily activity in greenhouse could act as countermeasure against psycho-physiological deconditioning.

7.
Aerosp Med Hum Perform ; 88(5): 457-462, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28417833

RESUMEN

BACKGROUND: The objective was to determine if short term exposure to dry immersion (DI) results in a cephalic fluid shift similar to what has been observed with spaceflight. METHODS: Data were collected from 10 individuals at rest and during the first 2 h of dry immersion. Jugular vein (JV), portal vein (PV), and thyroid volume were measured using 3D echography. Middle cerebral vein velocity (MCVv) was determined using transcranial Doppler ultrasound. The cochlear response to audio stimulation was used to derive an estimate of intracranial pressure (dICP). RESULTS: After 2 h of DI, there was a significant increase (mean ± SD) in JV (2.21 ± 1.10 mL), PV (1.05 ± 0.48 mL), and thyroid (0.428 ± 0.313 mL) volume. MCVv was also significantly increased with DI (3.90 ± 5.03 cm · s-1). There was no change in dICP with DI in part due to large individual variability. The range of dICP changes appeared to be related to MCVv, with participants with the largest increase in MCVv also showing increased dICP. DISCUSSION: The results suggest that DI induces a significant cephalic fluid shift similar to what is observed with spaceflight. The increased thyroid volume suggests that cerebral tissue may also be subjected to similar fluid filtration, with implications for changes in intracranial pressure. However, despite all participants having an increase in JV and thyroid volume, only half showed an increase in dICP, suggesting that increased venous pooling alone is not sufficient to cause increased intracranial pressure.Arbeille P, Avan P, Treffel L, Zuj K, Normand H, Denise P. Jugular and portal vein volume, middle cerebral vein velocity, and intracranial pressure in dry immersion. Aerosp Med Hum Perform. 2017; 88(5):457-462.


Asunto(s)
Venas Cerebrales/diagnóstico por imagen , Transferencias de Fluidos Corporales , Presión Intracraneal/fisiología , Venas Yugulares/diagnóstico por imagen , Vena Porta/diagnóstico por imagen , Simulación de Ingravidez , Estimulación Acústica , Adulto , Medicina Aeroespacial , Velocidad del Flujo Sanguíneo , Cóclea/fisiología , Voluntarios Sanos , Humanos , Imagenología Tridimensional , Venas Yugulares/anatomía & histología , Masculino , Tamaño de los Órganos , Vena Porta/anatomía & histología , Vuelo Espacial , Ultrasonografía Doppler Transcraneal
8.
Front Physiol ; 7: 605, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27994557

RESUMEN

Background: Vertebral deconditioning is commonly experienced after space flight and simulation studies. Disc herniation is quadrupled after space flight. Purpose: The main hypothesis formulated by the authors is that microgravity results in intervertebral disc (IVD) swelling. Study Design: The aim of the study was to identify the morphological changes of the spine and their clinical consequences after simulated microgravity by 3-day dry immersion (DI). The experimental protocol was performed on 12 male volunteers using magnetic resonance imaging and spectroscopy before and after DI. Methods: All the experiment was financially supported by CNES (Centre national d'études spatiales i.e., French Space Agency). Results: We observed an increase in spine height of 1.5 ± 0.4 cm and a decrease in curvature, particularly for the lumbar region with a decrease of -4 ± 2.5°. We found a significant increase in IVD volume of +8 ± 9% at T12-L1 and +11 ± 9% at L5-S1. This phenomenon is likely associated with the increase in disc intervertebral water content (IWC), 17 ± 27%. During the 3 days in DI, 92% of the subjects developed back pain in the lumbar region below the diaphragmatic muscle. This clinical observation may be linked to the morphological changes of the spine. Conclusions: The morphological changes observed and, specifically, the disc swelling caused by increased IWC may contribute to understanding disc herniation after microgravity exposure. Our results confirmed the efficiency of the 3-day DI model to reproduce quickly the effects of microgravity on spine morphology. Our findings raise the question of the subject selection in spatial studies, especially studies about spine morphology and reconditioning programs after space flight. These results may contribute to a better understanding of the mechanisms underlying disc herniation and may serve as the basis to develop countermeasures for astronauts and to prevent IVD herniation and back pain on Earth.

9.
PLoS One ; 11(2): e0150052, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26913867

RESUMEN

The objective of the study was to determine the influence of simulated microgravity by exposure to dry immersion on the craniomandibular system. Twelve healthy male volunteers participated in a 3-day dry immersion study. Before and immediately after exposure we measured maximal bite force using piezoresistive sensors. The mechanical properties of the jaw and cervical muscles were evaluated before, during, and after dry immersion using MyotonPRO. Because recent studies reported the effects of jaw motor activity on the postural stability of humans, stabilometric measurements of center of pressure were performed before and after dry immersion in two mandibular positions: rest position without jaw clenching, and intercuspidal position during voluntary teeth clenching. Results revealed no significant changes of maximal bite force after dry immersion. All postural parameters were significantly altered by dry immersion. There were however no significant differences in stabilometric data according to mandibular position. Moreover the masseter tonicity increased immediately after the end of dry immersion period. Dry immersion could be used as a valid model for studying the effects of microgravity on human subjects. However, 3 days appear insufficient in duration to evaluate the effects of weightlessness on maximal bite force. Our research suggests a link between postural disturbance after dry immersion and masseter tonicity.


Asunto(s)
Fuerza de la Mordida , Músculo Masetero/fisiología , Tono Muscular/fisiología , Equilibrio Postural/fisiología , Simulación de Ingravidez , Adulto , Electromiografía , Humanos , Inmersión , Masculino , Mandíbula/fisiología , Contracción Muscular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA