Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
New Phytol ; 240(5): 1743-1757, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37753542

RESUMEN

The oxygen isotope composition (δ18 O) of tree-ring cellulose is used to evaluate tree physiological responses to climate, but their interpretation is still limited due to the complexity of the isotope fractionation pathways. We assessed the relative contribution of seasonal needle and xylem water δ18 O variations to the intra-annual tree-ring cellulose δ18 O signature of larch trees at two sites with contrasting soil water availability in the Swiss Alps. We combined biweekly δ18 O measurements of soil water, needle water, and twig xylem water with intra-annual δ18 O measurements of tree-ring cellulose, xylogenesis analysis, and mechanistic and structural equation modeling. Intra-annual cellulose δ18 O values resembled source water δ18 O mean levels better than needle water δ18 O. Large parts of the rings were formed under high proportional exchange with unenriched xylem water (pex ). Maximum pex values were achieved in August and imprinted on sections at 50-75% of the ring. High pex values were associated with periods of high atmospheric evaporative demand (VPD). While VPD governed needle water δ18 O variability, we estimated a limited Péclet effect at both sites. Due to a variable pex , source water has a strong influence over large parts of the intra-annual tree-ring cellulose δ18 O variations, potentially masking signals coming from needle-level processes.


Asunto(s)
Árboles , Agua , Árboles/metabolismo , Agua/metabolismo , Isótopos de Oxígeno/metabolismo , Xilema/metabolismo , Celulosa/metabolismo , Suelo/química , Isótopos de Carbono/metabolismo
2.
New Phytol ; 236(1): 58-70, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35576102

RESUMEN

The impact of climate extremes on forest ecosystems is poorly understood but important for predicting carbon and water cycle feedbacks to climate. Some knowledge gaps still remain regarding how drought-related adjustments in intra-annual tree-ring characteristics directly impact tree carbon and water use. In this study we quantified the impact of an extreme summer drought on the water-use efficiency and carbon sequestration of four mature Norway spruce trees. We used detailed observations of wood formation (xylogenesis) and intra-annual tree-ring properties (quantitative wood anatomy and stable carbon isotopes) combined with physiological water-stress monitoring. During 41 d of tree water deficit, we observed an enrichment in 13 C but a reduction in cell enlargement and wall-thickening processes, which impacted the anatomical characteristics. These adjustments diminished carbon sequestration by 67% despite an 11% increase in water-use efficiency during drought. However, with the resumption of a positive hydric state in the stem, we observed a fast recovery of cell formation rates based on the accumulated assimilates produced during drought. Our findings enhance our understanding of carbon and water fluxes between the atmosphere and forest ecosystems, providing observational evidence on the tree intra-annual carbon sequestration and water-use efficiency dynamics to improve future generations of vegetation models.


Asunto(s)
Sequías , Árboles , Carbono , Isótopos de Carbono/análisis , Secuestro de Carbono , Ecosistema , Agua
3.
New Phytol ; 233(1): 194-206, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34610146

RESUMEN

The intensity and frequency of droughts events are projected to increase in future with expected adverse effects for forests. Thus, information on the dynamics of tree water uptake from different soil layers during and after drought is crucial. We applied an in situ water isotopologue monitoring system to determine the oxygen isotope composition in soil and xylem water of European beech with a 2-h resolution together with measurements of soil water content, transpiration and tree water deficit. Using a Bayesian isotope mixing model, we inferred the relative and absolute contribution of water from four different soil layers to tree water use. Beech took up more than 50% of its water from the uppermost 5 cm soil layer at the beginning of the 2018 drought, but then reduced absolute water uptake from the drying topsoil by 84%. The trees were not able to quantitatively compensate for restricted topsoil water availability by additional uptake from deeper soil layers, which is related to the fine root depth distribution. Absolute water uptake from the topsoil was restored to pre-drought levels within 3 wk after rewetting. These uptake patterns help to explain both the drought sensitivity of beech and its high recovery potential after drought release.


Asunto(s)
Fagus , Teorema de Bayes , Sequías , Suelo , Agua
4.
Proc Natl Acad Sci U S A ; 115(45): 11543-11548, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348774

RESUMEN

Determination of long-term tropical cyclone (TC) variability is of enormous importance to society; however, changes in TC activity are poorly understood owing to discrepancies among various datasets and limited span of instrumental records. While the increasing intensity and frequency of TCs have been previously documented on a long-term scale using various proxy records, determination of their poleward migration has been based mostly on short-term instrumental data. Here we present a unique tree-ring-based approach for determination of long-term variability in TC activity via forest disturbance rates in northeast Asia (33-45°N). Our results indicate significant long-term changes in TC activity, with increased rates of disturbances in the northern latitudes over the past century. The disturbance frequency was stable over time in the southern latitudes, however. Our findings of increasing disturbance frequency in the areas formerly situated at the edge of TC activity provide evidence supporting the broad relevance of poleward migration of TCs. Our results significantly enhance our understanding of the effects of climate change on TCs and emphasize the need for determination of long-term variation of past TC activity to improve future TC projections.

5.
Plant Cell Environ ; 42(5): 1674-1689, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30536787

RESUMEN

Conifers growing at high elevations need to optimize their stomatal conductance (gs ) for maximizing photosynthetic yield while minimizing water loss under less favourable thermal conditions. Yet the ability of high-elevation conifers to adjust their gs sensitivity to environmental drivers remains largely unexplored. We used 4 years of sap flow measurements to elucidate intraspecific and interspecific variability of gs in Larix decidua Mill. and Picea abies (L.) Karst along an elevational gradient and contrasting soil moisture conditions. Site- and species-specific gs response to main environmental drivers were examined, including vapour pressure deficit, air temperature, solar irradiance, and soil water potential. Our results indicate that maximum gs of L. decidua is >2 times higher, shows a more plastic response to temperature, and down-regulates gs stronger during atmospheric drought compared to P. abies. These differences allow L. decidua to exert more efficient water use, adjust to site-specific thermal conditions, and reduce water loss during drought episodes. The stronger plasticity of gs sensitivity to temperature and higher conductance of L. decidua compared to P. abies provide new insights into species-specific water use strategies, which affect species' performance and should be considered when predicting terrestrial water dynamics under future climatic change.


Asunto(s)
Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Tracheophyta , Adaptación Fisiológica , Sequías , Larix/fisiología , Pinus/fisiología , Suelo , Temperatura , Tracheophyta/fisiología , Agua/fisiología
6.
Plant Cell Environ ; 41(12): 2899-2914, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30107635

RESUMEN

Stable isotope ratios in tree rings have become an important proxy for palaeoclimatology, particularly in temperate regions. Yet temperate forests are often characterized by heterogeneous stand structures, and the effects of stand dynamics on carbon (δ13 C) and oxygen isotope ratios (δ18 O) in tree rings are not well explored. In this study, we investigated long-term trends and offsets in δ18 O and δ13 C of Picea abies and Fagus sylvatica in relation to tree age, size, and distance to the upper canopy at seven temperate sites across Europe. We observed strong positive trends in δ13 C that are best explained by the reconstructed dynamics of individual trees below the upper canopy, highlighting the influence of light attenuation on δ13 C in shade-tolerant species. We also detected positive trends in δ18 O with increasing tree size. However, the observed slopes are less steep and consistent between trees of different ages and thus can be more easily addressed. We recommend restricting the use of δ13 C to years when trees are in a dominant canopy position to infer long-term climate signals in δ13 C when relying on material from shade-tolerant species, such as beech and spruce. For such species, δ18 O should be in principle the superior proxy for climate reconstructions.


Asunto(s)
Cámbium/metabolismo , Isótopos de Carbono/metabolismo , Isótopos de Oxígeno/metabolismo , Árboles/metabolismo , Cámbium/química , Cámbium/crecimiento & desarrollo , Isótopos de Carbono/análisis , Clima , Fagus/química , Fagus/crecimiento & desarrollo , Fagus/metabolismo , Isótopos de Oxígeno/análisis , Picea/química , Picea/crecimiento & desarrollo , Picea/metabolismo , Árboles/química , Árboles/crecimiento & desarrollo
7.
New Phytol ; 216(4): 1104-1118, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28834549

RESUMEN

Stable isotopes in tree rings are increasingly used as proxies for climatic and ecophysiological changes. However, uncertainties remain about the strength and consistency of their response to environmental variation at different temporal (i.e. seasonal to inter-decadal) scales. We developed 5 yr of intra-seasonal and 62 yr of early- and late-wood δ13 C and δ18 O series of Smith fir (Abies georgei var. smithii) on the southeastern Tibetan Plateau, and used a process-based forward model to examine the relative importance of environmental and physiological controls on the isotopic data. In this temperate high-altitude region, the response, both δ18 O and δ13 C, is primarily to variations in relative humidity, but by different processes. In δ18 O, the response is via source water δ18 O but also arises from leaf water 18 O enrichment. In δ13 C, the response is via changes in stomatal conductance but is modified by carry-over effects from prior periods. We conclude that tree-ring δ18 O may be a more robust climate proxy than δ13 C, and δ13 C may be more suited to studies of site-related physiological responses to the local environment.


Asunto(s)
Abies/metabolismo , Isótopos de Carbono/metabolismo , Cambio Climático , Isótopos de Oxígeno/metabolismo , Modelos Lineales , Estaciones del Año , Tibet
8.
New Phytol ; 210(1): 108-21, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26639082

RESUMEN

Thinning fosters individual tree growth by increasing the availability of water, light and nutrients. At sites where water rather than light is limiting, thinning also enhances soil evaporation and might not be beneficial. Detailed knowledge of the short- to long-term physiological response underlying the growth responses to thinning is crucial for the management of forests already suffering from recurrent drought-induced dieback. We applied a dual isotope approach together with mechanistic isotope models to study the physiological processes underlying long-term growth enhancement of heavily thinned Pinus sylvestris in a xeric forest in Switzerland. This approach allowed us to identify and disentangle thinning-induced changes in stomatal conductance and assimilation rate. At our xeric study site, the increase in stomatal conductance far outweighed the increase in assimilation, implying that growth release in heavily thinned trees is primarily driven by enhanced water availability rather than increased light availability. We conclude that in forests with relatively isohydric species (drought avoiders) that are growing close to their physiological limits, thinning is recommended to maintain a less negative water balance and thus foster tree growth, and ultimately the survival of forest trees under drought.


Asunto(s)
Marcaje Isotópico/métodos , Luz , Pinus sylvestris/fisiología , Pinus sylvestris/efectos de la radiación , Agua/metabolismo , Isótopos de Carbono , Clima , Geografía , Modelos Biológicos , Isótopos de Oxígeno , Hojas de la Planta/fisiología , Estaciones del Año , Programas Informáticos , Suiza , Factores de Tiempo , Árboles/fisiología , Árboles/efectos de la radiación , Xilema/fisiología
9.
New Phytol ; 202(3): 772-783, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24602089

RESUMEN

For accurate interpretation of oxygen isotopes in tree rings (δ(18) O), it is necessary to disentangle the mechanisms underlying the variations in the tree's internal water cycle and to understand the transfer of source versus leaf water δ(18) O to phloem sugars and stem wood. We studied the seasonal transfer of oxygen isotopes from precipitation and soil water through the xylem, needles and phloem to the tree rings of Larix decidua at two alpine sites in the Lötschental (Switzerland). Weekly resolved δ(18) O records of precipitation, soil water, xylem and needle water, phloem organic matter and tree rings were developed. Week-to-week variations in needle-water (18) O enrichment were strongly controlled by weather conditions during the growing season. These short-term variations were, however, not significantly fingerprinted in tree-ring δ(18) O. Instead, seasonal trends in tree-ring δ(18) O predominantly mirrored trends in the source water, including recent precipitation and soil water pools. Modelling results support these findings: seasonal tree-ring δ(18) O variations are captured best when the week-to-week variations of the leaf water signal are suppressed. Our results suggest that climate signals in tree-ring δ(18) O variations should be strongest at temperate sites with humid conditions and precipitation maxima during the growing season.


Asunto(s)
Larix/metabolismo , Hojas de la Planta/metabolismo , Lluvia , Suelo/química , Árboles/metabolismo , Agua/metabolismo , Calibración , Humedad , Modelos Biológicos , Isótopos de Oxígeno , Estaciones del Año , Suiza , Temperatura , Presión de Vapor , Xilema/metabolismo
10.
Glob Chang Biol ; 20(12): 3700-12, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25156251

RESUMEN

The increasing carbon dioxide (CO2 ) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree-ring sites located across Europe are investigated to determine the intrinsic water-use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX-Bern 1.0) that integrates numerous ecosystem and land-atmosphere exchange processes in a theoretical framework. The spatial pattern of tree-ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south-to-north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil-water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation-climate feedbacks are currently still poorly constrained by observational data.


Asunto(s)
Ciclo del Carbono/fisiología , Dióxido de Carbono/metabolismo , Cambio Climático , Bosques , Modelos Teóricos , Árboles/crecimiento & desarrollo , Ciclo Hidrológico/fisiología , Isótopos de Carbono/análisis , Europa (Continente) , Geografía , Factores de Tiempo
11.
Tree Physiol ; 44(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38874315

RESUMEN

Disentangling the factors influencing the climate sensitivity of trees is crucial to understanding the susceptibility of forests to climate change. Reducing tree-to-tree competition and mixing tree species are two strategies often promoted to reduce the drought sensitivity of trees, but it is unclear how effective these measures are in different ecosystems. Here, we studied the growth and physiological responses to climate and severe droughts of silver fir and Douglas-fir growing in pure and mixed conditions at three sites in Switzerland. We used tree-ring width data and carbon (δ13C), oxygen (δ18O) and hydrogen (δ2H) stable isotope ratios from tree-ring cellulose to gain novel information on water relations and the physiology of trees in response to drought and how tree species mixture and competition modulate these responses. We found significant differences in isotope ratios between trees growing in pure and mixed conditions for the two species, although these differences varied between sites, e.g. trees growing in mixed conditions had higher δ13C values and tree-ring width than trees growing in pure conditions for two of the sites. For both species, differences between trees in pure and mixed conditions regarding their sensitivity to temperature, precipitation, climatic water balance and vapor pressure deficit were minor. Furthermore, trees growing in pure and mixed conditions showed similar responses of tree-ring width and isotope ratios to the past severe droughts of 2003, 2015 and 2018. Competition had only a significantly negative effect on δ13C of silver fir, which may suggest a decrease in photosynthesis due to higher competition for light and nutrients. Our study highlights that tree species mixture may have only moderate effects on the radial growth and physiological responses of silver fir and Douglas-fir to climatic conditions and that site condition effects may dominate over mixture effects.


Asunto(s)
Isótopos de Carbono , Celulosa , Cambio Climático , Isótopos de Oxígeno , Pseudotsuga , Árboles , Pseudotsuga/crecimiento & desarrollo , Pseudotsuga/fisiología , Pseudotsuga/metabolismo , Celulosa/metabolismo , Isótopos de Carbono/análisis , Árboles/crecimiento & desarrollo , Árboles/fisiología , Árboles/metabolismo , Isótopos de Oxígeno/análisis , Sequías , Abies/crecimiento & desarrollo , Abies/fisiología , Abies/metabolismo , Suiza
12.
Tree Physiol ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39151030

RESUMEN

Increases of temperatures and atmospheric CO2 concentration influence the growth performance of trees worldwide. The direction and intensity of tree growth and physiological responses to changing climate do, however, vary according to environmental conditions. Here we present complex, long-term, tree-physiological responses to unprecedented temperature increase in East Asia. For this purpose, we studied radial growth and isotopic (δ13C and δ18O) variations using tree-ring data for the past 100 years of dominant Quercus mongolica trees from the cool-temperate forests from Hallasan, South Korea. Overall, we found that tree stem basal area increment, intercellular CO2 concentration, and intrinsic water-use efficiency significantly increased over the last century. We observed, however, short-term variability in the trends of these variables among four periods identified by change point analysis. In comparison, δ18O did not show significant changes over time, suggesting no major hydrological changes in this precipitation-rich area. The strength and direction of growth-climate relationships also varied during the past 100 years. Basal Area Increment (BAI) did not show significant relationships with the climate over 1924-1949 and 1975-1999 periods. However, over 1950-1974 BAI was negatively affected by both temperature and precipitation, while after 2000 a temperature stimulus was observed. Finally, over the last two decades, the increase in Q. mongolica tree growth accelerated and was associated with high spring-summer temperatures and atmospheric CO2 concentrations and decreasing intrinsic water-use efficiency, δ18O, and VPD, suggesting that the photosynthetic rate continued increasing under no water limitations. Our results indicate that the performance of dominant trees of one of the most widely distributed species in East Asia has benefited from recent global changes, mainly over the last two decades. Such findings are essential for projections of forest dynamics and carbon sequestration under climate change.

13.
Tree Physiol ; 44(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38769900

RESUMEN

The effects of rising atmospheric CO2 concentrations (Ca) with climate warming on intrinsic water-use efficiency and radial growth in boreal forests are still poorly understood. We measured tree-ring cellulose δ13C, δ18O, and tree-ring width in Larix dahurica (larch) and Betula platyphylla (white birch), and analyzed their relationships with climate variables in a boreal permafrost region of northeast China over past 68 years covering a pre-warming period (1951-1984; base period) and a warm period (1985-2018; warm period). We found that white birch but not larch significantly increased their radial growth over the warm period. The increased intrinsic water-use efficiency in both species was mainly driven by elevated Ca but not climate warming. White birch but not larch showed significantly positive correlations between tree-ring δ13C, δ18O and summer maximum temperature as well as vapor pressure deficit in the warm period, suggesting a strong stomatal response in the broad-leaved birch to temperature changes. The climate warming-induced radial growth enhancement in white birch is primarily associated with a conservative water-use strategy. In contrast, larch exhibits a profligate water-use strategy. It implies an advantage for white birch over larch in the warming permafrost regions.


Asunto(s)
Betula , Larix , Hielos Perennes , Agua , Larix/crecimiento & desarrollo , Larix/fisiología , Betula/crecimiento & desarrollo , Betula/fisiología , Agua/metabolismo , China , Cambio Climático , Taiga , Calentamiento Global
14.
Sci Total Environ ; 923: 171174, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38402972

RESUMEN

Understanding how trees prioritize carbon gain at the cost of drought vulnerability under severe drought conditions is crucial for predicting which genetic groups and individuals will be resilient to future climate conditions. In this study, we investigated variations in growth, tree-ring anatomy as well as carbon and oxygen isotope ratios to assess the sensitivity and the xylem formation process in response to an episode of severe drought in 29 mature white spruce (Picea glauca [Moench] Voss) families grown in a common garden trial. During the drought episode, the majority of families displayed decreased growth and exhibited either sustained or increased intrinsic water-use efficiency (iWUE), which was largely influenced by reduced stomatal conductance as revealed by the dual carbon­oxygen isotope approach. Different water-use strategies were detected within white spruce populations in response to drought conditions. Our results revealed intraspecific variation in the prevailing physiological mechanisms underlying drought response within and among populations of Picea glauca. The presence of different genetic groups reflecting diverse water-use strategies within this largely-distributed conifer is likely to lessen the negative effects of drought and decrease the overall forest ecosystems' sensitivity to it.


Asunto(s)
Picea , Tracheophyta , Humanos , Sequías , Ecosistema , Árboles , Isótopos de Carbono/análisis , Carbono , Agua , Isótopos de Oxígeno
15.
New Phytol ; 200(1): 144-157, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23763637

RESUMEN

The oxygen stable isotope composition of plant organic matter (OM) (particularly of wood and cellulose in the tree ring archive) is valuable in studies of plant-climate interaction, but there is a lack of information on the transfer of the isotope signal from the leaf to heterotrophic tissues. We studied the oxygen isotopic composition and its enrichment above source water of leaf water over diel courses in five tree species covering a broad range of life forms. We tracked the transfer of the isotopic signal to leaf water-soluble OM and further to phloem-transported OM. Observed leaf water evaporative enrichment was consistent with values predicted from mechanistic models taking into account nonsteady-state conditions. While leaf water-soluble OM showed the expected (18)O enrichment in all species, phloem sugars were less enriched than expected from leaf water enrichment in Scots pine (Pinus sylvestris), European larch (Larix decidua) and Alpine ash (Eucalyptus delegatensis). Oxygen atom exchange with nonenriched water during phloem loading and transport, as well as a significant contribution of assimilates from bark photosynthesis, can explain these phloem (18)O enrichment patterns. Our results indicate species-specific uncoupling between the leaf water and the OM oxygen isotope signal, which is important for the interpretation of tree ring data.


Asunto(s)
Carbohidratos/química , Isótopos de Oxígeno/química , Oxígeno/fisiología , Floema/fisiología , Hojas de la Planta/fisiología , Árboles/fisiología , Agua/fisiología , Transporte Biológico , Celulosa/química , Cambio Climático , Eucalyptus/química , Eucalyptus/fisiología , Larix/química , Larix/fisiología , Floema/química , Pinus sylvestris/química , Pinus sylvestris/fisiología , Hojas de la Planta/química , Transducción de Señal , Árboles/química , Agua/química , Madera/química , Madera/fisiología
17.
Sci Total Environ ; 860: 160519, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36442636

RESUMEN

Climate warming has profoundly altered the status of permafrost and has caused extensive permafrost degradation in the Northern Hemisphere. However, long-term observations investigating the hydrological dynamics of permafrost and its ecological effects on plant growth are lacking. Previous studies have reported tree-ring stable hydrogen isotope ratios of lignin methoxy groups (δ2HLM) as an archive of hydrological signals. This study sampled tree-ring cores from a Larix gmelinii forest in Nanwenghe Forest Park, Northeastern China, and separately measured the tree-ring δ2HLM for earlywood and latewood from 1900 to 2020. Earlywood and latewood δ2HLM values, as well as the difference between them, showed no significant long-term trend from 1900 to 1987; however, they both exhibited significant increasing trends since 1988 at rates of 2.6 ‰ and 4.9 ‰ per decade, respectively. This variance changes the magnitude of the difference between the two chronologies and can be explained by the shift in source water δ2H values during tree growth. Based on a structural equation model analysis, when the influence of permafrost melting weakened due to permafrost degradation, the growing season temperature was better recorded in latewood δ2HLM through the effects of precipitation δ2H from July to September. Based on the environmental response of tree-ring δ2HLM in the permafrost region, permafrost degradation influences the source water δ2H values of trees, thereby affecting the expression of temperature signals in tree-ring δ2HLM. The novel results in this study provide a new perspective on permafrost degradation based on the dynamic responses of tree-ring δ2HLM to source water δ2H during permafrost degradation.


Asunto(s)
Hielos Perennes , Árboles , Lignina , Bosques , Agua
18.
Tree Physiol ; 43(5): 694-705, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-36519757

RESUMEN

Stable isotope ratio analysis of tree rings has been widely and successfully applied in recent decades for climatic and environmental reconstructions. These studies were mostly conducted at an annual resolution, considering one measurement per tree ring, often focusing on latewood. However, much more information could be retrieved with high-resolution intra-annual isotope studies, based on the fact that the wood cells and the corresponding organic matter are continuously laid down during the growing season. Such studies are still relatively rare, but have a unique potential for reconstructing seasonal climate variations or short-term changes in physiological plant properties, like water-use efficiency. The reason for this research gap is mostly technical, as on the one hand sub-annual, manual splitting of rings is very tedious, while on the other hand automated laser ablation for high-resolution analyses is not yet well established and available. Here, we give an update on the current status of laser ablation research for analysis of the carbon isotope ratio (δ13C) of wood, describe an easy-to-use laser ablation system, its operation and discuss practical issues related to tree core preparation, including cellulose extraction. The results show that routine analysis with up to 100 laser shot-derived δ13C-values daily and good precision and accuracy (ca. 0.1‰) comparable to conventional combustion in an elemental analyzer are possible. Measurements on resin-extracted wood is recommended as most efficient, but laser ablation is also possible on cellulose extracted wood pieces. Considering the straightforward sample preparation, the technique is therefore ripe for wide-spread application. With this work, we hope to stimulate future progress in the promising field of high-resolution environmental reconstruction using laser ablation.


Asunto(s)
Celulosa , Terapia por Láser , Isótopos de Carbono/análisis , Estaciones del Año , Celulosa/análisis , Madera/química , Isótopos de Oxígeno/análisis
19.
Tree Physiol ; 43(5): 706-721, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-36738262

RESUMEN

Recent experiments have underlined the potential of δ2H in tree-ring cellulose as a physiological indicator of shifts in autotrophic versus heterotrophic processes (i.e., the use of fresh versus stored non-structural carbohydrates). However, the impact of these processes has not yet been quantified under natural conditions. Defoliator outbreaks disrupt tree functioning and carbon assimilation, stimulating remobilization, therefore providing a unique opportunity to improve our understanding of changes in δ2H. By exploring a 700-year tree-ring isotope chronology from Switzerland, we assessed the impact of 79 larch budmoth (LBM, Zeiraphera griseana [Hübner]) outbreaks on the growth of its host tree species, Larix decidua [Mill]. The LBM outbreaks significantly altered the tree-ring isotopic signature, creating a 2H-enrichment and an 18O- and 13C-depletion. Changes in tree physiological functioning in outbreak years are shown by the decoupling of δ2H and δ18O (O-H relationship), in contrast to the positive correlation in non-outbreak years. Across the centuries, the O-H relationship in outbreak years was not significantly affected by temperature, indicating that non-climatic physiological processes dominate over climate in determining δ2H. We conclude that the combination of these isotopic parameters can serve as a metric for assessing changes in physiological mechanisms over time.


Asunto(s)
Larix , Mariposas Nocturnas , Animales , Árboles , Suiza , Isótopos de Oxígeno/análisis , Mariposas Nocturnas/fisiología , Larix/fisiología , Isótopos de Carbono/análisis
20.
Nature ; 440(7088): 1179-82, 2006 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-16641993

RESUMEN

Twentieth-century warming could lead to increases in the moisture-holding capacity of the atmosphere, altering the hydrological cycle and the characteristics of precipitation. Such changes in the global rate and distribution of precipitation may have a greater direct effect on human well-being and ecosystem dynamics than changes in temperature itself. Despite the co-variability of both of these climate variables, attention in long-term climate reconstruction has mainly concentrated on temperature changes. Here we present an annually resolved oxygen isotope record from tree-rings, providing a millennial-scale reconstruction of precipitation variability in the high mountains of northern Pakistan. The climatic signal originates mainly from winter precipitation, and is robust over ecologically different sites. Centennial-scale variations reveal dry conditions at the beginning of the past millennium and through the eighteenth and early nineteenth centuries, with precipitation increasing during the late nineteenth and the twentieth centuries to yield the wettest conditions of the past 1,000 years. Comparison with other long-term precipitation reconstructions indicates a large-scale intensification of the hydrological cycle coincident with the onset of industrialization and global warming, and the unprecedented amplitude argues for a human role.


Asunto(s)
Clima , Lluvia , Árboles/metabolismo , Agua/análisis , Atmósfera/química , Ecosistema , Geografía , Efecto Invernadero , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia Medieval , Isótopos de Oxígeno , Pakistán , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA