Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hematol ; 99(2): 223-235, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38009287

RESUMEN

Splenomegaly frequently occurs in patients with Plasmodium falciparum (Pf) or P. vivax (Pv) malarial anemia, but mechanisms underlying this co-occurrence are unclear. In malaria-endemic Papua, Indonesia, we prospectively analyzed red blood cell (RBC) concentrations in the spleen and spleen-mimetic retention in 37 subjects splenectomized for trauma or hyperreactive splenomegaly, most of whom were infected with Plasmodium. Splenomegaly (median 357 g [range: 80-1918 g]) was correlated positively with the proportion of red-pulp on histological sections (median 88.1% [range: 74%-99.4%]; r = .59, p = .0003) and correlated negatively with the proportion of white-pulp (median 8.3% [range: 0.4%-22.9%]; r = -.50, p = .002). The number of RBC per microscopic field (>95% uninfected) was correlated positively with spleen weight in both Pf-infected (r = .73; p = .017) and Pv-infected spleens (r = .94; p = .006). The median estimated proportion of total-body RBCs retained in Pf-infected spleens was 8.2% (range: 1.0%-33.6%), significantly higher than in Pv-infected (2.6% [range: 0.6%-23.8%]; p = .015) and PCR-negative subjects (2.5% [range: 1.0%-3.3%]; p = .006). Retained RBCs accounted for over half of circulating RBC loss seen in Pf infections. The proportion of total-body RBC retained in Pf- and Pv-infected spleens correlated negatively with hemoglobin concentrations (r = -.56, p = .0003), hematocrit (r = -.58, p = .0002), and circulating RBC counts (r = -.56, p = .0003). Splenic CD71-positive reticulocyte concentrations correlated with spleen weight in Pf (r = 1.0; p = .003). Retention rates of peripheral and splenic RBCs were correlated negatively with circulating RBC counts (r = -.69, p = .07 and r = -.83, p = .008, respectively). In conclusion, retention of mostly uninfected RBC in the spleen, leading to marked congestion of the red-pulp, was associated with splenomegaly and is the major mechanism of anemia in subjects infected with Plasmodium, particularly Pf.


Asunto(s)
Anemia , Malaria Falciparum , Malaria Vivax , Malaria , Humanos , Esplenomegalia/etiología , Eritrocitos , Anemia/complicaciones , Malaria/complicaciones , Malaria Falciparum/complicaciones , Plasmodium falciparum , Malaria Vivax/complicaciones
2.
Mol Syst Biol ; 18(4): e10824, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35475529

RESUMEN

Clinical immunity to P. falciparum malaria is non-sterilizing, with adults often experiencing asymptomatic infection. Historically, asymptomatic malaria has been viewed as beneficial and required to help maintain clinical immunity. Emerging views suggest that these infections are detrimental and constitute a parasite reservoir that perpetuates transmission. To define the impact of asymptomatic malaria, we pursued a systems approach integrating antibody responses, mass cytometry, and transcriptional profiling of individuals experiencing symptomatic and asymptomatic P. falciparum infection. Defined populations of classical and atypical memory B cells and a TH2 cell bias were associated with reduced risk of clinical malaria. Despite these protective responses, asymptomatic malaria featured an immunosuppressive transcriptional signature with upregulation of pathways involved in the inhibition of T-cell function, and CTLA-4 as a predicted regulator in these processes. As proof of concept, we demonstrated a role for CTLA-4 in the development of asymptomatic parasitemia in infection models. The results suggest that asymptomatic malaria is not innocuous and might not support the induction of immune processes to fully control parasitemia or efficiently respond to malaria vaccines.


Asunto(s)
Malaria Falciparum , Parasitemia , Adulto , Infecciones Asintomáticas , Antígeno CTLA-4 , Humanos , Terapia de Inmunosupresión , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Plasmodium falciparum
3.
Infect Immun ; 90(2): e0043521, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34871039

RESUMEN

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a diverse family of multidomain proteins expressed on the surface of malaria-infected erythrocytes, is an important target of protective immunity against malaria. Our group recently studied transcription of the var genes encoding PfEMP1 in individuals from Papua, Indonesia, with severe or uncomplicated malaria. We cloned and expressed domains from 32 PfEMP1s, including 22 that were upregulated in severe malaria and 10 that were upregulated in uncomplicated malaria, using a wheat germ cell-free expression system. We used Luminex technology to measure IgG antibodies to these 32 domains and control proteins in 63 individuals (11 children). At presentation to hospital, levels of antibodies to PfEMP1 domains were either higher in uncomplicated malaria or were not significantly different between groups. Using principal component analysis, antibodies to 3 of 32 domains were highly discriminatory between groups. These included two domains upregulated in severe malaria, a DBLß13 domain and a CIDRα1.6 domain (which has been previously implicated in severe malaria pathogenesis), and a DBLδ domain that was upregulated in uncomplicated malaria. Antibody to control non-PfEMP1 antigens did not differ with disease severity. Antibodies to PfEMP1 domains differ with malaria severity. Lack of antibodies to locally expressed PfEMP1 types, including both domains previously associated with severe malaria and newly identified targets, may in part explain malaria severity in Papuan adults.


Asunto(s)
Malaria Falciparum , Malaria , Adulto , Anticuerpos Antiprotozoarios , Niño , Eritrocitos , Humanos , Indonesia , Proteínas de la Membrana/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
4.
BMC Med ; 20(1): 190, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35672703

RESUMEN

BACKGROUND: In Papua (Indonesia), infants with P. falciparum and/or P. vivax malaria are at risk of severe anaemia and death. We hypothesized that in an area of high malaria transmission, intermittent screening and treatment of infants with malaria (ISTi) will reduce morbidity compared to passive case detection (PCDi). METHODS: We conducted a cluster randomised, open label, superiority trial. A total of 21 clusters of village health posts (VHP) were randomised 1:1 to either IST for infants coinciding with 4 routine immunisation visits or PCDi. Healthy term infants born to consenting mothers enrolled into a maternal malaria cluster randomised trial were included in the study and followed for 12 months. Point of care malaria rapid diagnostic tests were used to detect peripheral parasitaemia at 2, 3, 4 and 9 months old in all infants in ISTi clusters and when symptomatic in PCDi clusters. Infants with detected peripheral parasitaemia were treated with dihydroartemisinin-piperaquine. The co-primary outcomes were the incidence rate of clinical malaria in the first year of life and the prevalence of parasitaemia at age 12 months. The incidence rate ratio and prevalence ratio between ISTi and PCDi were estimated using mixed-effects Poisson and log-binomial regression modelling (accounting for clustering at VHP level). RESULTS: Between May 2014 and February 2017, 757 infants were enrolled into the study, 313 into 10 ISTi clusters, and 444 into 11 PCDi clusters. Overall, 132 episodes of parasitaemia were detected, of whom 17 (12.9%) were in symptomatic infants. Over 12 months, the incidence rate (IR) of clinical malaria was 24 [95% CI, 10-50] per 1000 children-years at risk in the ISTi arm and 19 [95% CI, 8,38] per 1000 children-years in the PCDi arm (adjusted incidence rate ratio [aIRR] 1.77 [95% CI, 0.62-5.01]; p = 0.280). The prevalence of parasitaemia at 12 months was 13% (33/254) in the IST clusters and 15% (57/379) in the PCD clusters (adjusted prevalence ratio (aPR) = 0.92 (95% CI, 0.70-1.21), p = 0.55). There was no difference in the risk of anaemia between treatment arms. CONCLUSIONS: In high malaria transmission area outside of Africa, our study suggests that compared to PCDi, ISTi offers no significant benefit in reducing the risk of clinical malaria in infants born to women receiving effective protection from malaria during pregnancy. TRIAL REGISTRATION: ClinicalTrials.gov NCT02001428 , registered on 20 Nov 2013.


Asunto(s)
Anemia , Antimaláricos , Malaria Falciparum , Malaria Vivax , Malaria , Anemia/epidemiología , Antimaláricos/uso terapéutico , Niño , Femenino , Humanos , Indonesia/epidemiología , Lactante , Malaria/diagnóstico , Malaria/epidemiología , Malaria/prevención & control , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malaria Vivax/diagnóstico , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/epidemiología , Parasitemia/diagnóstico , Parasitemia/epidemiología , Parasitemia/prevención & control , Embarazo , Vacunación
5.
PLoS Med ; 18(5): e1003632, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34038413

RESUMEN

BACKGROUND: A very large biomass of intact asexual-stage malaria parasites accumulates in the spleen of asymptomatic human individuals infected with Plasmodium vivax. The mechanisms underlying this intense tropism are not clear. We hypothesised that immature reticulocytes, in which P. vivax develops, may display high densities in the spleen, thereby providing a niche for parasite survival. METHODS AND FINDINGS: We examined spleen tissue in 22 mostly untreated individuals naturally exposed to P. vivax and Plasmodium falciparum undergoing splenectomy for any clinical indication in malaria-endemic Papua, Indonesia (2015 to 2017). Infection, parasite and immature reticulocyte density, and splenic distribution were analysed by optical microscopy, flow cytometry, and molecular assays. Nine non-endemic control spleens from individuals undergoing spleno-pancreatectomy in France (2017 to 2020) were also examined for reticulocyte densities. There were no exclusion criteria or sample size considerations in both patient cohorts for this demanding approach. In Indonesia, 95.5% (21/22) of splenectomy patients had asymptomatic splenic Plasmodium infection (7 P. vivax, 13 P. falciparum, and 1 mixed infection). Significant splenic accumulation of immature CD71 intermediate- and high-expressing reticulocytes was seen, with concentrations 11 times greater than in peripheral blood. Accordingly, in France, reticulocyte concentrations in the splenic effluent were higher than in peripheral blood. Greater rigidity of reticulocytes in splenic than in peripheral blood, and their higher densities in splenic cords both suggest a mechanical retention process. Asexual-stage P. vivax-infected erythrocytes of all developmental stages accumulated in the spleen, with non-phagocytosed parasite densities 3,590 times (IQR: 2,600 to 4,130) higher than in circulating blood, and median total splenic parasite loads 81 (IQR: 14 to 205) times greater, accounting for 98.7% (IQR: 95.1% to 98.9%) of the estimated total-body P. vivax biomass. More reticulocytes were in contact with sinus lumen endothelial cells in P. vivax- than in P. falciparum-infected spleens. Histological analyses revealed 96% of P. vivax rings/trophozoites and 46% of schizonts colocalised with 92% of immature reticulocytes in the cords and sinus lumens of the red pulp. Larger splenic cohort studies and similar investigations in untreated symptomatic malaria are warranted. CONCLUSIONS: Immature CD71+ reticulocytes and splenic P. vivax-infected erythrocytes of all asexual stages accumulate in the same splenic compartments, suggesting the existence of a cryptic endosplenic lifecycle in chronic P. vivax infection. Findings provide insight into P. vivax-specific adaptions that have evolved to maximise survival and replication in the spleen.


Asunto(s)
Plasmodium vivax/fisiología , Reticulocitos/metabolismo , Bazo/metabolismo , Bazo/parasitología , Esplenectomía/estadística & datos numéricos , Adolescente , Adulto , Infecciones Asintomáticas , Femenino , Humanos , Indonesia , Malaria Vivax/parasitología , Malaria Vivax/fisiopatología , Masculino , Persona de Mediana Edad , Nueva Guinea , Estudios Prospectivos , Adulto Joven
6.
PLoS Biol ; 16(3): e2004328, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29529020

RESUMEN

Within the human host, the malaria parasite Plasmodium falciparum is exposed to multiple selection pressures. The host environment changes dramatically in severe malaria, but the extent to which the parasite responds to-or is selected by-this environment remains unclear. From previous studies, the parasites that cause severe malaria appear to increase expression of a restricted but poorly defined subset of the PfEMP1 variant, surface antigens. PfEMP1s are major targets of protective immunity. Here, we used RNA sequencing (RNAseq) to analyse gene expression in 44 parasite isolates that caused severe and uncomplicated malaria in Papuan patients. The transcriptomes of 19 parasite isolates associated with severe malaria indicated that these parasites had decreased glycolysis without activation of compensatory pathways; altered chromatin structure and probably transcriptional regulation through decreased histone methylation; reduced surface expression of PfEMP1; and down-regulated expression of multiple chaperone proteins. Our RNAseq also identified novel associations between disease severity and PfEMP1 transcripts, domains, and smaller sequence segments and also confirmed all previously reported associations between expressed PfEMP1 sequences and severe disease. These findings will inform efforts to identify vaccine targets for severe malaria and also indicate how parasites adapt to-or are selected by-the host environment in severe malaria.


Asunto(s)
Antígenos de Protozoos/genética , Antígenos de Superficie/genética , Malaria/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Transcriptoma , Regulación de la Expresión Génica , Humanos , Malaria/patología , Plasmodium falciparum/aislamiento & purificación , Plasmodium falciparum/metabolismo , Análisis de Secuencia de ARN
7.
Malar J ; 19(1): 28, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31948448

RESUMEN

BACKGROUND: The sensitivity of rapid diagnostic tests (RDTs) for malaria is inadequate for detecting low-density, often asymptomatic infections, such as those that can occur when screening pregnant women for malaria. The performance of the Alere™ Ultra-sensitive Malaria Ag Plasmodium falciparum RDT (uRDT) was assessed retrospectively in pregnant women in Indonesia. METHODS: The diagnostic performance of the uRDT and the CareStart™ Malaria HRP2/pLDH VOM (Plasmodium vivax, Plasmodium ovale and Plasmodium malariae) Combo RDT (csRDT) were assessed using 270 stored red blood cell pellets and plasma samples from asymptomatic pregnant women. These included 112 P. falciparum negative and 158 P. falciparum positive samples detected by a composite test (qPCR, LAMP, nPCR) as reference standard. Diagnostic indicators: sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), diagnostic odds ratio (DOR) and the level of agreement (kappa) were calculated for comparison. RESULTS: Compared with the reference test, the uRDT had a sensitivity of 19.6% (95% CI 13.9-26.8) and specificity of 98.2% (93.1-99.7%). The csRDT was 22.8% (16.7-30.3) sensitive and 95.5% (89.4-98.3) specific for P. falciparum infections. Performance of the uRDT was non-significantly different to the csRDT (p = 0.169). RDT outcome was stratified by qPCR cycling threshold (Ct), and performance of the RDTs was found to be comparable across parasite loads. CONCLUSION: The uRDT performed similarly to the currently used csRDTs in detecting P. falciparum infections in asymptomatic pregnant women. In these settings, molecular diagnostics are currently the most sensitive for malaria.


Asunto(s)
Programas de Detección Diagnóstica/normas , Malaria Falciparum/diagnóstico , Complicaciones Parasitarias del Embarazo/diagnóstico , Coinfección/diagnóstico , ADN Protozoario/análisis , ADN Protozoario/sangre , ADN Protozoario/aislamiento & purificación , Eritrocitos/parasitología , Femenino , Humanos , Indonesia , Oportunidad Relativa , Plasmodium/genética , Plasmodium/inmunología , Plasmodium/aislamiento & purificación , Valor Predictivo de las Pruebas , Embarazo , Estudios Retrospectivos , Sensibilidad y Especificidad
8.
Malar J ; 19(1): 271, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32718342

RESUMEN

The Asia-Pacific region faces formidable challenges in achieving malaria elimination by the proposed target in 2030. Molecular surveillance of Plasmodium parasites can provide important information on malaria transmission and adaptation, which can inform national malaria control programmes (NMCPs) in decision-making processes. In November 2019 a parasite genotyping workshop was held in Jakarta, Indonesia, to review molecular approaches for parasite surveillance and explore ways in which these tools can be integrated into public health systems and inform policy. The meeting was attended by 70 participants from 8 malaria-endemic countries and partners of the Asia Pacific Malaria Elimination Network. The participants acknowledged the utility of multiple use cases for parasite genotyping including: quantifying the prevalence of drug resistant parasites, predicting risks of treatment failure, identifying major routes and reservoirs of infection, monitoring imported malaria and its contribution to local transmission, characterizing the origins and dynamics of malaria outbreaks, and estimating the frequency of Plasmodium vivax relapses. However, the priority of each use case varies with different endemic settings. Although a one-size-fits-all approach to molecular surveillance is unlikely to be applicable across the Asia-Pacific region, consensus on the spectrum of added-value activities will help support data sharing across national boundaries. Knowledge exchange is needed to establish local expertise in different laboratory-based methodologies and bioinformatics processes. Collaborative research involving local and international teams will help maximize the impact of analytical outputs on the operational needs of NMCPs. Research is also needed to explore the cost-effectiveness of genetic epidemiology for different use cases to help to leverage funding for wide-scale implementation. Engagement between NMCPs and local researchers will be critical throughout this process.


Asunto(s)
Monitoreo Epidemiológico , Genotipo , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Plasmodium falciparum/genética , Plasmodium vivax/genética , Vigilancia de la Población , Asia/epidemiología , Congresos como Asunto , Retroalimentación , Malaria Falciparum/parasitología , Malaria Vivax/parasitología , Islas del Pacífico/epidemiología
10.
Artículo en Inglés | MEDLINE | ID: mdl-28533239

RESUMEN

High-grade chloroquine (CQ) resistance has emerged in both Plasmodium falciparum and P. vivax The aim of the present study was to investigate the phenotypic differences of CQ resistance in both of these species and the ability of known CQ resistance reversal agents (CQRRAs) to alter CQ susceptibility. Between April 2015 and April 2016, the potential of verapamil (VP), mibefradil (MF), L703,606 (L7), and primaquine (PQ) to reverse CQ resistance was assessed in 46 P. falciparum and 34 P. vivax clinical isolates in Papua, Indonesia, where CQ resistance is present in both species, using a modified schizont maturation assay. In P. falciparum, CQ 50% inhibitory concentrations (IC50s) were reduced when CQ was combined with VP (1.4-fold), MF (1.2-fold), L7 (4.2-fold), or PQ (1.8-fold). The degree of CQ resistance reversal in P. falciparum was highly correlated with CQ susceptibility for all CQRRAs (R2 = 0.951, 0.852, 0.962, and 0.901 for VP, MF, L7, and PQ, respectively), in line with observations in P. falciparum laboratory strains. In contrast, no reduction in the CQ IC50s was observed with any of the CQRRAs in P. vivax, even in those isolates with high chloroquine IC50s. The differential effect of CQRRAs in P. falciparum and P. vivax suggests significant differences in CQ kinetics and, potentially, the likely mechanism of CQ resistance between these two species.


Asunto(s)
Antimaláricos/farmacología , Cloroquina/farmacología , Resistencia a Medicamentos/fisiología , Malaria Falciparum/tratamiento farmacológico , Malaria Vivax/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Plasmodium vivax/efectos de los fármacos , Humanos , Indonesia , Malaria Falciparum/parasitología , Malaria Vivax/parasitología , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación
11.
Antimicrob Agents Chemother ; 60(1): 361-7, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26525783

RESUMEN

Chloroquine (CQ)-resistant Plasmodium vivax is present in most countries where P. vivax infection is endemic, but the underlying molecular mechanisms responsible remain unknown. Increased expression of P. vivax crt-o (pvcrt-o) has been correlated with in vivo CQ resistance in an area with low-grade resistance. We assessed pvcrt-o expression in isolates from Papua (Indonesia), where P. vivax is highly CQ resistant. Ex vivo drug susceptibilities to CQ, amodiaquine, piperaquine, mefloquine, and artesunate were determined using a modified schizont maturation assay. Expression levels of pvcrt-o were measured using a novel real-time quantitative reverse transcription-PCR method. Large variations in pvcrt-o expression were observed across the 51 isolates evaluated, with the fold change in expression level ranging from 0.01 to 59 relative to that seen with the P. vivax ß-tubulin gene and from 0.01 to 24 relative to that seen with the P. vivax aldolase gene. Expression was significantly higher in isolates with the majority of parasites at the ring stage of development (median fold change, 1.7) compared to those at the trophozoite stage (median fold change, 0.5; P < 0.001). Twenty-nine isolates fulfilled the criteria for ex vivo drug susceptibility testing and showed high variability in CQ responses (median, 107.9 [range, 6.5 to 345.7] nM). After controlling for the parasite stage, we found that pvcrt-o expression levels did not correlate with the ex vivo response to CQ or with that to any of the other antimalarials tested. Our results highlight the importance of development-stage composition for measuring pvcrt-o expression and suggest that pvcrt-o transcription is not a primary determinant of ex vivo drug susceptibility. A comprehensive transcriptomic approach is warranted for an in-depth investigation of the role of gene expression levels and P. vivax drug resistance.


Asunto(s)
Antimaláricos/farmacología , Cloroquina/farmacología , Resistencia a Múltiples Medicamentos/genética , Estadios del Ciclo de Vida/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Plasmodium vivax/efectos de los fármacos , Proteínas Protozoarias/genética , Amodiaquina/farmacología , Artemisininas/farmacología , Artesunato , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Regulación de la Expresión Génica , Humanos , Concentración 50 Inhibidora , Estadios del Ciclo de Vida/genética , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/parasitología , Mefloquina/farmacología , Proteínas de Transporte de Membrana/metabolismo , Plasmodium vivax/genética , Plasmodium vivax/crecimiento & desarrollo , Plasmodium vivax/metabolismo , Proteínas Protozoarias/metabolismo , Quinolinas/farmacología , Transcripción Genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
12.
Malar J ; 15(1): 258, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27149991

RESUMEN

BACKGROUND: Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) variants are encoded by var genes and mediate pathogenic cytoadhesion and antigenic variation in malaria. PfEMP1s can be broadly divided into three principal groups (A, B and C) and they contain conserved arrangements of functional domains called domain cassettes. Despite their tremendous diversity there is compelling evidence that a restricted subset of PfEMP1s is expressed in severe disease. In this study antibodies from patients with severe and uncomplicated malaria were compared for differences in reactivity with a range of PfEMP1s to determine whether antibodies to particular PfEMP1 domains were associated with severe or uncomplicated malaria. METHODS: Parts of expressed var genes in a severe malaria patient were identified by RNAseq and several of these partial PfEMP1 domains were expressed together with others from laboratory isolates. Antibodies from Papuan patients to these parts of multiple PfEMP1 proteins were measured. RESULTS: Patients with uncomplicated malaria were more likely to have antibodies that recognized PfEMP1 of Group C type and recognized a broader repertoire of group A and B PfEMP1s than patients with severe malaria. CONCLUSION: These data suggest that exposure to a broad range of group A and B PfEMP1s is associated with protection from severe disease in Papua, Indonesia.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Malaria Falciparum/inmunología , Proteínas Protozoarias/inmunología , Adolescente , Adulto , Preescolar , Femenino , Humanos , Indonesia , Masculino , Adulto Joven
13.
Antimicrob Agents Chemother ; 59(10): 6117-24, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26195523

RESUMEN

The 4-aminoquinoline naphthoquine (NQ) and the thiazine dye methylene blue (MB) have potent in vitro efficacies against Plasmodium falciparum, but susceptibility data for P. vivax are limited. The species- and stage-specific ex vivo activities of NQ and MB were assessed using a modified schizont maturation assay on clinical field isolates from Papua, Indonesia, where multidrug-resistant P. falciparum and P. vivax are prevalent. Both compounds were highly active against P. falciparum (median [range] 50% inhibitory concentration [IC50]: NQ, 8.0 nM [2.6 to 71.8 nM]; and MB, 1.6 nM [0.2 to 7.0 nM]) and P. vivax (NQ, 7.8 nM [1.5 to 34.2 nM]; and MB, 1.2 nM [0.4 to 4.3 nM]). Stage-specific drug susceptibility assays revealed significantly greater IC50s in parasites exposed at the trophozoite stage than at the ring stage for NQ in P. falciparum (26.5 versus 5.1 nM, P = 0.021) and P. vivax (341.6 versus 6.5 nM, P = 0.021) and for MB in P. vivax (10.1 versus 1.6 nM, P = 0.010). The excellent ex vivo activities of NQ and MB against both P. falciparum and P. vivax highlight their potential utility for the treatment of multidrug-resistant malaria in areas where both species are endemic.


Asunto(s)
Antimaláricos/farmacología , Azul de Metileno/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium vivax/efectos de los fármacos
14.
medRxiv ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38633782

RESUMEN

Background: Zoonotic P. knowlesi and P. cynomolgi symptomatic and asymptomatic infections occur across endemic areas of Southeast Asia. Most infections are low-parasitemia, with an unknown proportion below routine microscopy detection thresholds. Molecular surveillance tools optimizing the limit of detection (LOD) would allow more accurate estimates of zoonotic malaria prevalence. Methods: An established ultra-sensitive Plasmodium genus quantitative-PCR (qPCR) assay targeting the 18S rRNA gene underwent LOD evaluation with and without reverse transcription (RT) for P. knowlesi, P. cynomolgi and P. vivax using total nucleic acid preserved (DNA/RNA Shield™) isolates and archived dried blood spots (DBS). LODs for selected P. knowlesi-specific assays, and reference P. vivax- and P. cynomolgi-specific assays were determined with RT. Assay specificities were assessed using clinical malaria samples and malaria-negative controls. Results: The use of reverse transcription improved Plasmodium species detection by up to 10,000-fold (Plasmodium genus), 2759-fold (P. knowlesi), 1000-fold (P. vivax) and 10-fold (P. cynomolgi). The median LOD with RT for the Kamau et al. Plasmodium genus RT-qPCR assay was ≤0.0002 parasites/µL for P. knowlesi and 0.002 parasites/µL for both P. cynomolgi and P. vivax. The LODs with RT for P. knowlesi-specific PCRs were: Imwong et al. 18S rRNA (0.0007 parasites/µL); Divis et al. real-time 18S rRNA (0.0002 parasites/µL); Lubis et al. hemi-nested SICAvar (1.1 parasites/µL) and Lee et al. nested 18S rRNA (11 parasites/µL). The LOD for P. vivax- and P. cynomolgi-specific assays with RT were 0.02 and 0.20 parasites/µL respectively. For DBS P. knowlesi samples the median LOD for the Plasmodium genus qPCR with RT was 0.08, and without RT was 19.89 parasites/uL (249-fold change); no LOD improvement was demonstrated in DBS archived beyond 6 years. The Plasmodium genus and P. knowlesi-assays were 100% specific for Plasmodium species and P. knowlesi detection, respectively, from 190 clinical infections and 48 healthy controls. Reference P. vivax-specific primers demonstrated known cross-reactivity with P. cynomolgi. Conclusion: Our findings support the use of an 18S rRNA Plasmodium genus qPCR and species-specific nested PCR protocol with RT for highly-sensitive surveillance of zoonotic and human Plasmodium species infections.

15.
PLOS Glob Public Health ; 2(8): e0000727, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962743

RESUMEN

The international tourist destination of Bali reported its first case of Coronavirus Disease 2019 or COVID-19 in March 2020. To better understand the extent of exposure of Bali's 4.3 million inhabitants to the COVID-19 virus, we performed two repeated cross-sectional serosurveys stratified by urban and rural areas. We used a highly specific multiplex assay that detects antibodies to three different viral antigens. We also assessed demographic and social risk factors and history of symptoms. Our results show that the virus was widespread in Bali by late 2020, with 16.73% (95% CI 12.22-21.12) of the population having been infected by that time. We saw no differences in seroprevalence between urban and rural areas, possibly due to extensive population mixing, and similar levels of seroprevalence by gender and among age groups, except for lower seroprevalence in the very young. We observed no difference in seroprevalence between our two closely spaced surveys. Individuals reporting symptoms in the past six months were about twice as likely to be seropositive as those not reporting symptoms. Based upon official statistics for laboratory diagnosed cases for the six months prior to the survey, we estimate that for every reported case an additional 52 cases, at least, were undetected. Our results support the hypothesis that by late 2020 the virus was widespread in Bali, but largely undetected by surveillance.

16.
Lancet Infect Dis ; 22(3): 367-376, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34710363

RESUMEN

BACKGROUND: There is a high risk of Plasmodium vivax recurrence in patients treated for Plasmodium falciparum malaria in co-endemic areas. Primaquine radical cure has the potential to reduce P vivax recurrences in patients presenting with P falciparum as well as P vivax malaria but is undermined by poor adherence to the currently recommended 14-day regimen. We aimed to assess the efficacy and safety of supervised versus unsupervised primaquine radical cure in patients presenting with uncomplicated malaria. METHODS: We did a cluster-randomised, controlled, open-label superiority trial in Papua, Indonesia. 21 clusters of village health posts, matched by annual parasite index, were randomly assigned (1:1) to treat patients (age >12 months and body weight >5 kg) presenting with confirmed uncomplicated P falciparum or P vivax malaria with oral dihydroartemisinin-piperaquine plus either a supervised or unsupervised 14-day course of oral primaquine (0·5 mg/kg per day). Patients in the supervised group were supervised taking their primaquine dose on alternate days. Patients were followed-up for 6 months and those who presented again with malaria were retreated with the same drug regimen. Masking was not possible due to the nature of the study. The primary outcome was the incidence risk of P vivax malaria over 6 months, assessed in the modified intention-to-treat population (all patients who were assigned to a treatment group, excluding patients who were lost to follow-up after their first visit). This trial is now complete, and is registered with ClinicalTrials.gov, NCT02787070. FINDINGS: Between Sept 14, 2016, and July 31, 2018, 436 patients were screened for eligibility and 419 were enrolled; 223 (53%) patients in 11 clusters were assigned to supervised primaquine treatment and 196 (47%) in ten clusters to unsupervised primaquine treatment. 161 (72%) of 223 patients in the supervised group and 151 (77%) of 196 in the unsupervised group completed 6 months of follow-up. At 6 months, the incidence risk of P vivax recurrence in the supervised group was 29·7% (95% CI 16·4-49·9) versus 55·8% (32·3-81·8) in the unsupervised group (hazard ratio 0·23 [95% CI 0·07-0·76]; p=0·016). The incidence rate for P vivax recurrence was 539 (95% CI 390-747) infections per 1000 person-years in the supervised group versus 859 (673-1096) in the unsupervised group (incidence rate ratio 0·63 [95% CI 0·42-0·94]; p=0·025). The corresponding rates in the 224 patients who presented with P falciparum malaria were 346 (95% CI 213-563) and 660 (446-977; incidence rate ratio 0·52 [95% CI 0·28-0·98]; p=0·043). Seven serious adverse events were reported (three in the supervised group, four in the unsupervised group), none of which were deemed treatment-related, and there were no deaths. INTERPRETATION: In this area of moderate malaria transmission, supervision of primaquine radical cure treatment reduced the risk of P vivax recurrence. This finding was apparent for patients presenting with either P falciparum or P vivax malaria. Further studies are warranted to investigate the safety and efficacy of radical cure for patients presenting with uncomplicated falciparum malaria in other co-endemic areas. FUNDING: The Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Foreign Affairs and Trade of the Australian Government. TRANSLATION: For the Indonesian translation of the abstract see Supplementary Materials section.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria Vivax , Australia , Humanos , Indonesia/epidemiología , Lactante , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/epidemiología , Malaria Vivax/prevención & control , Primaquina/uso terapéutico
17.
PLoS Negl Trop Dis ; 16(7): e0010648, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35867730

RESUMEN

Genotyping Plasmodium vivax relapses can provide insights into hypnozoite biology. We performed targeted amplicon sequencing of 127 relapses occurring in Indonesian soldiers returning to malaria-free Java after yearlong deployment in malarious Eastern Indonesia. Hepatic carriage of multiple hypnozoite clones was evident in three-quarters of soldiers with two successive relapses, yet the majority of relapse episodes only displayed one clonal population. The number of clones detected in relapse episodes decreased over time and through successive relapses, especially in individuals who received hypnozoiticidal therapy. Interrogating the multiplicity of infection in this P. vivax relapse cohort reveals evidence of independent activation and slow depletion of hypnozoites over many months by multiple possible mechanisms, including parasite senescence and host immunity.


Asunto(s)
Antimaláricos , Malaria Vivax , Malaria , Parásitos , Animales , Antimaláricos/uso terapéutico , Humanos , Malaria/parasitología , Malaria Vivax/parasitología , Plasmodium vivax/genética , Recurrencia
18.
Commun Biol ; 5(1): 1411, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564617

RESUMEN

Traditionally, patient travel history has been used to distinguish imported from autochthonous malaria cases, but the dormant liver stages of Plasmodium vivax confound this approach. Molecular tools offer an alternative method to identify, and map imported cases. Using machine learning approaches incorporating hierarchical fixation index and decision tree analyses applied to 799 P. vivax genomes from 21 countries, we identified 33-SNP, 50-SNP and 55-SNP barcodes (GEO33, GEO50 and GEO55), with high capacity to predict the infection's country of origin. The Matthews correlation coefficient (MCC) for an existing, commonly applied 38-SNP barcode (BR38) exceeded 0.80 in 62% countries. The GEO panels outperformed BR38, with median MCCs > 0.80 in 90% countries at GEO33, and 95% at GEO50 and GEO55. An online, open-access, likelihood-based classifier framework was established to support data analysis (vivaxGEN-geo). The SNP selection and classifier methods can be readily amended for other use cases to support malaria control programs.


Asunto(s)
Malaria Vivax , Malaria , Humanos , Malaria Vivax/diagnóstico , Malaria Vivax/genética , Funciones de Verosimilitud , Plasmodium vivax/genética , Internet
19.
Artículo en Inglés | MEDLINE | ID: mdl-34193398

RESUMEN

Drug resistant Plasmodium parasites are a major threat to malaria control and elimination. After reports of high levels of multidrug resistant P. falciparum and P. vivax in Indonesia, in 2005, the national first-line treatment policy for uncomplicated malaria was changed in March 2006, to dihydroartemisinin-piperaquine against all species. This study assessed the temporal trends in ex vivo drug susceptibility to chloroquine (CQ) and piperaquine (PIP) for both P. falciparum and P. vivax clinical isolates collected between 2004 and 2018, by using schizont maturation assays, and genotyped a subset of isolates for known and putative molecular markers of CQ and PIP resistance by using Sanger and next generation whole genome sequencing. The median CQ IC50 values varied significantly between years in both Plasmodium species, but there was no significant trend over time. In contrast, there was a significant trend for increasing PIP IC50s in both Plasmodium species from 2010 onwards. Whereas the South American CQ resistant 7G8 pfcrt SVMNT isoform has been fixed since 2005 in the study area, the pfmdr1 86Y allele frequencies decreased and became fixed at the wild-type allele in 2015. In P. vivax isolates, putative markers of CQ resistance (no pvcrt-o AAG (K10) insertion and pvmdr1 Y967F and F1076L) were fixed at the mutant alleles since 2005. None of the putative PIP resistance markers were detected in P. falciparum. The ex vivo drug susceptibility and molecular analysis of CQ and PIP efficacy for P. falciparum and P. vivax after 12 years of intense drug pressure with DHP suggests that whilst the degree of CQ resistance appears to have been sustained, there has been a slight decline in PIP susceptibility, although this does not appear to have reached clinically significant levels. The observed decreasing trend in ex vivo PIP susceptibility highlights the importance of ongoing surveillance.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico , Resistencia a Medicamentos/genética , Humanos , Indonesia/epidemiología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Quinolinas
20.
JCI Insight ; 6(14)2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34128836

RESUMEN

IFN-γ-driven responses to malaria have been shown to modulate the development and function of T follicular helper (TFH) cells and memory B cells (MBCs), with conflicting evidence of their involvement in the induction of antibody responses required to achieve clinical immunity and their association with disease outcomes. Using high-dimensional single-cell mass cytometry, we identified distinct populations of TH1-polarized CD4+ T cells and MBCs expressing the TH1-defining transcription factor T-bet, associated with either increased or reduced risk of Plasmodium vivax (P. vivax) malaria, demonstrating that inflammatory responses to malaria are not universally detrimental for infection. Furthermore, we found that, whereas class-switched but not IgM+ MBCs were associated with a reduced risk of symptomatic malaria, populations of TH1 cells with a stem central memory phenotype, TH17 cells, and T regulatory cells were associated with protection from asymptomatic infection, suggesting that activation of cell-mediated immunity might also be required to control persistent P. vivax infection with low parasite burden.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Malaria Vivax/inmunología , Células B de Memoria/inmunología , Infección Persistente/inmunología , Plasmodium vivax/inmunología , Antimaláricos/uso terapéutico , Infecciones Asintomáticas , Linfocitos T CD4-Positivos/metabolismo , Estudios Transversales , Voluntarios Sanos , Humanos , Inmunidad Celular , Inmunofenotipificación/métodos , Indonesia , Malaria Vivax/sangre , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/parasitología , Células B de Memoria/metabolismo , Infección Persistente/sangre , Infección Persistente/parasitología , Plasmodium vivax/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA