Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 29(17): 2831-2844, 2020 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-32744307

RESUMEN

Friedreich ataxia (FA) is caused by GAA repeat expansions in the first intron of FXN, the gene encoding frataxin, which results in decreased gene expression. Thanks to the high degree of frataxin conservation, the Drosophila melanogaster fruitfly appears as an adequate animal model to study this disease and to evaluate therapeutic interventions. Here, we generated a Drosophila model of FA with CRISPR/Cas9 insertion of approximately 200 GAA in the intron of the fly frataxin gene fh. These flies exhibit a developmental delay and lethality associated with decreased frataxin expression. We were able to bypass preadult lethality using genetic tools to overexpress frataxin only during the developmental period. These frataxin-deficient adults are short-lived and present strong locomotor defects. RNA-Seq analysis identified deregulation of genes involved in amino-acid metabolism and transcriptomic signatures of oxidative stress. In particular, we observed a progressive increase of Tspo expression, fully rescued by adult frataxin expression. Thus, Tspo expression constitutes a molecular marker of the disease progression in our fly model and might be of interest in other animal models or in patients. Finally, in a candidate drug screening, we observed that N-acetyl cysteine improved the survival, locomotor function, resistance to oxidative stress and aconitase activity of frataxin-deficient flies. Therefore, our model provides the opportunity to elucidate in vivo, the protective mechanisms of this molecule of therapeutic potential. This study also highlights the strength of the CRISPR/Cas9 technology to introduce human mutations in endogenous orthologous genes, leading to Drosophila models of human diseases with improved physiological relevance.


Asunto(s)
Acetilcisteína/farmacología , Sistemas CRISPR-Cas/genética , Ataxia de Friedreich/genética , Proteínas de Unión a Hierro/genética , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Ataxia de Friedreich/tratamiento farmacológico , Ataxia de Friedreich/patología , Humanos , Intrones/genética , Estrés Oxidativo/genética , RNA-Seq , Expansión de Repetición de Trinucleótido/genética , Frataxina
2.
Proc Natl Acad Sci U S A ; 115(11): E2624-E2633, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29476013

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder caused by a CAG expansion in the ATXN3 gene leading to a polyglutamine expansion in the ataxin-3 protein. The nuclear presence and aggregation of expanded ataxin-3 are critical steps in disease pathogenesis. To identify novel therapeutic targets, we investigated the nucleocytoplasmic transport system by screening a collection of importins and exportins that potentially modulate this nuclear localization. Using cell, Drosophila, and mouse models, we focused on three transport proteins, namely, CRM1, IPO13, KPNA3, and their respective Drosophila orthologs Emb, Cdm, and Kap-α3. While overexpression of CRM1/Emb demonstrated positive effects in Drosophila, KPNA3/Kap-α3 emerged as the most promising target, as knockdown via multiple RNAi lines demonstrated its ability to shuttle both truncated and full-length expanded ataxin-3, rescue neurodegeneration, restore photoreceptor formation, and reduce aggregation. Furthermore, KPNA3 knockout in SCA3 mice resulted in an amelioration of molecular and behavioral disturbances such as total activity, anxiety, and gait. Since KPNA3 is known to function as an import protein and recognize nuclear localization signals (NLSs), this work unites ataxin-3 structure to the nuclear pore machinery and provides a link between karyopherins, NLS signals, and polyglutamine disease, as well as demonstrates that KPNA3 is a key player in the pathogenesis of SCA3.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Ataxina-3/genética , Enfermedad de Machado-Joseph/genética , alfa Carioferinas/genética , Animales , Ataxina-3/metabolismo , Expansión de las Repeticiones de ADN , Modelos Animales de Enfermedad , Drosophila , Femenino , Células HEK293 , Humanos , Enfermedad de Machado-Joseph/metabolismo , Masculino , Ratones , Ratones Noqueados , Péptidos , alfa Carioferinas/metabolismo
3.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918672

RESUMEN

Huntington's disease (HD) is a progressive and fatal autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the first exon of the huntingtin gene (HTT). In spite of considerable efforts, there is currently no treatment to stop or delay the disease. Although HTT is expressed ubiquitously, most of our knowledge has been obtained on neurons. More recently, the impact of mutant huntingtin (mHTT) on other cell types, including glial cells, has received growing interest. It is currently unclear whether new pathological pathways could be identified in these cells compared to neurons. To address this question, we performed an in vivo screen for modifiers of mutant huntingtin (HTT-548-128Q) induced pathology in Drosophila adult glial cells and identified several putative therapeutic targets. Among them, we discovered that partial nej/dCBP depletion in these cells was protective, as revealed by strongly increased lifespan and restored locomotor activity. Thus, dCBP promotes the HD pathology in glial cells, in contrast to previous opposite findings in neurons. Further investigations implicated the transcriptional activator Foxo as a critical downstream player in this glial protective pathway. Our data suggest that combinatorial approaches combined to specific tissue targeting may be required to uncover efficient therapies in HD.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Factores de Transcripción Forkhead/metabolismo , Neuroglía/metabolismo , Transducción de Señal , Factores de Transcripción p300-CBP/metabolismo , Animales , Biomarcadores , Calcio/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Metabolismo Energético , Pruebas Genéticas , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/etiología , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo
4.
Hum Mol Genet ; 24(9): 2615-26, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25628335

RESUMEN

Friedreich ataxia (FA), the most common inherited autosomal-recessive ataxia in Caucasians, is characterized by progressive degeneration of the central and peripheral nervous system, hypertrophic cardiomyopathy and increased incidence of diabetes. FA is caused by a GAA repeat expansion in the first intron of the gene encoding frataxin, an evolutionarily conserved mitochondrial protein, which results in decreased gene expression. Ubiquitous inactivation of the fly frataxin ortholog dfh blocks the transition from larval to pupal stages. In this study, we show that this phenotype is due to ecdysteroid deficiency and that feeding larvae with the 20-hydroxyecdysone steroid hormone rescues this developmental blockage. In mammals, adrenodoxin, the ferredoxin FDX1, is an Fe-S-containing protein essential for the synthesis of various steroid hormones. We show here that the two fly ferredoxins, Fdxh and Fdxh2 (encoded by CG1319), are also involved in steroidogenesis. This provides a potent mechanism by which frataxin, known to be involved in Fe-S cluster biosynthesis, could affect steroidogenesis through reduced ferredoxin activity. Finally, we show that frataxin inactivation decreases progesterone synthesis in human KGN ovarian granulosa cells. Thus, the involvement of frataxin in steroid synthesis appears to be a conserved function of the protein from flies to human and our data suggest that steroidogenesis could be affected in FA patients.


Asunto(s)
Silenciador del Gen , Estudios de Asociación Genética , Proteínas de Unión a Hierro/genética , Ovario/citología , Ovario/metabolismo , Esteroides/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Dípteros , Ecdisteroides/deficiencia , Ecdisterona/administración & dosificación , Femenino , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Humanos , Proteínas de Unión a Hierro/metabolismo , Larva/efectos de los fármacos , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Fenotipo , Progesterona/biosíntesis , Interferencia de ARN , Frataxina
5.
Hum Mol Genet ; 23(4): 968-79, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24105471

RESUMEN

Friedreich's ataxia (FRDA), the most common hereditary ataxia, is characterized by progressive degeneration of the central and peripheral nervous system, hypertrophic cardiomyopathy and a high risk of diabetes. FRDA is caused by abnormally low levels of frataxin, a highly conserved mitochondrial protein. Drosophila has been previously successfully used to model FRDA in various cell types, including neurons and glial cells. Here, we report the development of a Drosophila cardiac model of FRDA. In vivo heart imaging revealed profound impairments in heart function in frataxin-depleted Drosophila, including a strong increase in end-systolic and end-diastolic diameters and a decrease in fractional shortening (FS). These features, reminiscent of pathological phenotypes in humans, are fully rescued by complementation with human frataxin, suggesting conserved cardiac functions of frataxin between the two organisms. Oxidative stress is not a major factor of heart impairment in frataxin-depleted flies, suggesting the involvement of other pathological mechanisms notably mitochondrial respiratory chain (MRC) dysfunction. Accordingly, we report that methylene blue (MB), a compound known to act as an alternative electron carrier that bypasses mitochondrial complexes I-III, was able to prevent heart dysfunction. MB also partially rescued the phenotype when administered post-symptomatically. Analysis of MB derivatives demonstrates that only compounds with electron carrier properties are able to prevent the heart phenotype. Thus MB, a compound already used for several clinical applications, appears promising for the treatment of the heart dysfunctions that are a major cause of death of FRDA patients. This work provides the grounds for further evaluation of MB action in mammals.


Asunto(s)
Cardiotónicos/farmacología , Ataxia de Friedreich/tratamiento farmacológico , Azul de Metileno/farmacología , Animales , Cardiotónicos/uso terapéutico , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Evaluación Preclínica de Medicamentos , Ataxia de Friedreich/patología , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Masculino , Azul de Metileno/uso terapéutico , Interferencia de ARN , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Frataxina
6.
PLoS Genet ; 8(11): e1003081, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209438

RESUMEN

Cardiac aging is a complex process, which is influenced by both environmental and genetic factors. Deciphering the mechanisms involved in heart senescence therefore requires identifying the molecular pathways that are affected by age in controlled environmental and genetic conditions. We describe a functional genomic investigation of the genetic control of cardiac senescence in Drosophila. Molecular signatures of heart aging were identified by differential transcriptome analysis followed by a detailed bio-informatic analysis. This approach implicated the JNK/dJun pathway and the transcription factor Vri/dNFIL3 in the transcription regulatory network involved in cardiac senescence and suggested the possible involvement of oxidative stress (OS) in the aging process. To validate these predictions, we developed a new in vivo assay to analyze heart performance in various contexts of adult heart-specific gene overexpression and inactivation. We demonstrate that, as in mammals, OS plays a central role in cardiac senescence, and we show that pharmacological interventions impinging on OS slow heart senescence. These observations strengthen the idea that cardiac aging is controlled by evolutionarily conserved mechanisms, further validating Drosophila as a model to study cardiac senescence. In addition, we demonstrate that Vri, the ortholog of the vertebrate NFIL3/E4B4 transcription factor, is a major genetic regulator of cardiac aging. Vri overexpression leads to major heart dysfunctions, but its loss of function significantly reduces age-related cardiac dysfunctions. Furthermore, we unambiguously show that the JNK/AP1 pathway, the role of which in cardiac aging in mammals is controversial, is activated during cardiac aging and has a detrimental effect on cardiac senescence. This data-driven functional genomic analysis therefore led to the identification of key components of the Gene Regulatory Network of cardiac aging in Drosophila and may prompt to investigate the involvement of their counterparts in the cardiac aging process in mammals.


Asunto(s)
Envejecimiento , Proteínas de Drosophila , Drosophila melanogaster , Corazón/fisiología , Sistema de Señalización de MAP Quinasas/genética , Factores de Transcripción , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Regulación de la Expresión Génica , Humanos , Estrés Oxidativo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
PLoS Genet ; 8(8): e1002897, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22916034

RESUMEN

Proteins with long, pathogenic polyglutamine (polyQ) sequences have an enhanced propensity to spontaneously misfold and self-assemble into insoluble protein aggregates. Here, we have identified 21 human proteins that influence polyQ-induced ataxin-1 misfolding and proteotoxicity in cell model systems. By analyzing the protein sequences of these modifiers, we discovered a recurrent presence of coiled-coil (CC) domains in ataxin-1 toxicity enhancers, while such domains were not present in suppressors. This suggests that CC domains contribute to the aggregation- and toxicity-promoting effects of modifiers in mammalian cells. We found that the ataxin-1-interacting protein MED15, computationally predicted to possess an N-terminal CC domain, enhances spontaneous ataxin-1 aggregation in cell-based assays, while no such effect was observed with the truncated protein MED15ΔCC, lacking such a domain. Studies with recombinant proteins confirmed these results and demonstrated that the N-terminal CC domain of MED15 (MED15CC) per se is sufficient to promote spontaneous ataxin-1 aggregation in vitro. Moreover, we observed that a hybrid Pum1 protein harboring the MED15CC domain promotes ataxin-1 aggregation in cell model systems. In strong contrast, wild-type Pum1 lacking a CC domain did not stimulate ataxin-1 polymerization. These results suggest that proteins with CC domains are potent enhancers of polyQ-mediated protein misfolding and aggregation in vitro and in vivo.


Asunto(s)
Complejo Mediador/química , Proteínas del Tejido Nervioso/química , Proteínas Nucleares/química , Péptidos/química , Proteínas de Unión al ARN/química , Animales , Ataxina-1 , Ataxinas , Células COS , Chlorocebus aethiops , Escherichia coli/genética , Humanos , Complejo Mediador/genética , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Péptidos/genética , Plásmidos , Polimerizacion , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Relación Estructura-Actividad , Transfección
8.
Aging Dis ; 12(2): 425-440, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33815875

RESUMEN

In the last decades, the strong increase in the proportion of older people worldwide, and the increased prevalence of age associated degenerative diseases, have put a stronger focus on aging biology. In spite of important progresses in our understanding of the aging process, an integrative view is still lacking and there is still need for efficient anti-aging interventions that could improve healthspan, reduce incidence of age-related disease and, eventually, increase the lifespan. Interestingly, some compounds from traditional medicine have been found to possess anti-oxidative and anti-inflammatory properties, suggesting that they could play a role as anti-aging compounds, although in depth in vivo investigations are still scarce. In this study we used one the major aging model organisms, Drosophila melanogaster, to investigate the ability of four herb extracts (HEs: Dendrobium candidum, Ophiopogon japonicum, Ganoderma sinense and Panax notoginseng) widely used in traditional Chinese medicine (TCM) to slow down aging and improve healthspan of aged animals. Combining multiple approaches (stress resistance assays, lifespan and metabolic measurements, functional heart characterizations and behavioral assays), we show that these four HEs provide in vivo protection from various insults, albeit with significant compound-specific differences. Importantly, extracts of P. notoginseng and G. sinense increase the healthspan of aging animals, as shown by increased activity during aging and improved heart function. In addition, these two compounds also provide protection in a Drosophila model of Huntington's disease (HD), suggesting that, besides their anti-aging properties in normal individuals, they could be also efficient in the protection against age-related diseases.

9.
J Neurosci ; 27(10): 2483-92, 2007 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-17344386

RESUMEN

Spinocerebellar ataxia 7 (SCA7) is a neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the ataxin 7 (ATXN7) protein, a member of a multiprotein complex involved in histone acetylation. We have created a conditional Drosophila model of SCA7 in which expression of truncated ATXN7 (ATXN7T) with a pathogenic polyQ expansion is induced in neurons in adult flies. In this model, mutant ATXN7T accumulated in neuronal intranuclear inclusions containing ubiquitin, the 19S proteasome subunit, and HSP70 (heat shock protein 70), as in patients. Aggregation was accompanied by a decrease in locomotion and lifespan but limited neuronal death. Disaggregation of the inclusions, when expression of expanded ATXN7T was stopped, correlated with improved locomotor function and increased lifespan, suggesting that the pathology may respond to treatment. Lifespan was then used as a quantitative marker in a candidate gene approach to validate the interest of the model and to identify generic modulators of polyQ toxicity and specific modifiers of SCA7. Several molecular pathways identified in this focused screen (proteasome function, unfolded protein stress, caspase-dependent apoptosis, and histone acetylation) were further studied in primary neuronal cultures. Sodium butyrate, a histone deacetylase inhibitor, improved the survival time of the neurons. This model is therefore a powerful tool for studying SCA7 and for the development of potential therapies for polyQ diseases.


Asunto(s)
Modelos Animales de Enfermedad , Drosophila , Ataxias Espinocerebelosas/genética , Animales , Animales Modificados Genéticamente , Ataxina-7 , Muerte Celular , Células Cultivadas , Discinesias/genética , Glutamina , Humanos , Cuerpos de Inclusión Intranucleares/ultraestructura , Longevidad , Masculino , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Péptidos/genética , Fenotipo , Ratas , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/fisiopatología , Treonina
10.
Elife ; 72018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30475209

RESUMEN

Glia are important modulators of neural activity, yet few studies link glia to sleep regulation. We find that blocking activity of the endocytosis protein, dynamin, in adult Drosophila glia increases sleep and enhances sleep need, manifest as resistance to sleep deprivation. Surface glia comprising the fly equivalent of the blood-brain barrier (BBB) mediate the effect of dynamin on sleep. Blocking dynamin in the surface glia causes ultrastructural changes, albeit without compromising the integrity of the barrier. Supporting a role for endocytic trafficking in sleep, a screen of Rab GTPases identifies sleep-modulating effects of the recycling endosome Rab11 in surface glia. We also find that endocytosis is increased in BBB glia during sleep and reflects sleep need. We propose that endocytic trafficking through the BBB represents a function of sleep.


Asunto(s)
Drosophila/fisiología , Endocitosis , Neuroglía/fisiología , Sueño , Animales , Barrera Hematoencefálica/fisiología , Proteínas de Drosophila/metabolismo , Dinaminas/metabolismo , Proteínas de Unión al GTP rab/metabolismo
11.
Dis Model Mech ; 11(7)2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29898895

RESUMEN

Friedreich's ataxia (FA) is caused by reduced levels of frataxin, a highly conserved mitochondrial protein. There is currently no effective treatment for this disease, which is characterized by progressive neurodegeneration and cardiomyopathy, the latter being the most common cause of death in patients. We previously developed a Drosophila melanogaster cardiac model of FA, in which the fly frataxin is inactivated specifically in the heart, leading to heart dilatation and impaired systolic function. Methylene Blue (MB) was highly efficient to prevent these cardiac dysfunctions. Here, we used this model to screen in vivo the Prestwick Chemical Library, comprising 1280 compounds. Eleven drugs significantly reduced the cardiac dilatation, some of which may possibly lead to therapeutic applications in the future. The one with the strongest protective effects was paclitaxel, a microtubule-stabilizing drug. In parallel, we characterized the histological defects induced by frataxin deficiency in cardiomyocytes and observed strong sarcomere alterations with loss of striation of actin fibers, along with full disruption of the microtubule network. Paclitaxel and MB both improved these structural defects. Therefore, we propose that frataxin inactivation induces cardiac dysfunction through impaired sarcomere assembly or renewal due to microtubule destabilization, without excluding additional mechanisms. This study is the first drug screening of this extent performed in vivo on a Drosophila model of cardiac disease. Thus, it also brings the proof of concept that cardiac functional imaging in adult Drosophila flies is usable for medium-scale in vivo pharmacological screening, with potent identification of cardioprotective drugs in various contexts of cardiac diseases.


Asunto(s)
Cardiotónicos/análisis , Cardiotónicos/uso terapéutico , Drosophila melanogaster/fisiología , Evaluación Preclínica de Medicamentos , Ataxia de Friedreich/tratamiento farmacológico , Actinas/metabolismo , Animales , Cardiotónicos/farmacología , Modelos Animales de Enfermedad , Ataxia de Friedreich/patología , Proteínas de Unión a Hierro/metabolismo , Azul de Metileno/farmacología , Azul de Metileno/uso terapéutico , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Contracción Miocárdica/efectos de los fármacos , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miosinas/metabolismo , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Reproducibilidad de los Resultados , Sarcómeros/metabolismo , Bibliotecas de Moléculas Pequeñas , Frataxina
12.
Sci Rep ; 7(1): 16222, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29176735

RESUMEN

In mammals, both sterile wounding and infection induce inflammation and activate the innate immune system, and the combination of both challenges may lead to severe health defects, revealing the importance of the balance between the intensity and resolution of the inflammatory response for the organism's fitness. Underlying mechanisms remain however elusive. Using Drosophila, we show that, upon infection with the entomopathogenic bacterium Pseudomonas entomophila (Pe), a sterile wounding induces a reduced resistance and increased host mortality. To identify the molecular mechanisms underlying the susceptibility of wounded flies to bacterial infection, we analyzed the very first steps of the process by comparing the transcriptome landscape of infected (simple hit flies, SH), wounded and infected (double hit flies, DH) and wounded (control) flies. We observed that overexpressed genes in DH flies compared to SH ones are significantly enriched in genes related to stress, including members of the JNK pathway. We demonstrated that the JNK pathway plays a central role in the DH phenotype by manipulating the Jra/dJun activity. Moreover, the CrebA/Creb3-like transcription factor (TF) and its targets were up-regulated in SH flies and we show that CrebA is required for mounting an appropriate immune response. Drosophila thus appears as a relevant model to investigate interactions between trauma and infection and allows to unravel key pathways involved.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Infecciones por Pseudomonas/metabolismo , Heridas y Lesiones/metabolismo , Animales , Drosophila melanogaster , Transducción de Señal , Transcriptoma , Heridas y Lesiones/microbiología
13.
BMC Genomics ; 7: 69, 2006 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-16584578

RESUMEN

BACKGROUND: During the last two decades progress in the genetics of aging in invertebrate models such as C. elegans and D. melanogaster has clearly demonstrated the existence of regulatory pathways that control the rate of aging in these organisms, such as the insulin-like pathway, the Jun kinase pathway and the Sir2 deacetylase pathway. Moreover, it was rapidly shown that some of these pathways are conserved from yeast to humans. In parallel to genetic studies, genomic expression approaches have given us significant information on the gene expression modifications that occur during aging either in wild type or long-lived mutant animals. But most of the genomic studies of invertebrate models have been performed so far on whole animals, while several recent studies in mammals have shown that the effects of aging are tissue specific. RESULTS: We used oligonucleotide microarrays to address the specificities of transcriptional responses in aging Drosophila in head, thorax or whole body. These fly parts are enriched in transcripts that represent different and complementary sets of genes. We present evidence for both specific and common transcriptional responses during the aging process in these tissues. About half of the genes described as downregulated with age are linked to reproduction and enriched in gonads. Greater downregulation of mitochondrial genes, activation of the JNK pathway and upregulation of proteasome subunits in the thorax of aged flies all suggest that muscle may be particularly sensitive to aging. Simultaneous age-related impairment of synaptic transmission gene expression is observed in fly heads. In addition, a detailed comparison with other microarray data indicates that in aged flies there are significant deviations from the canonical responses to oxidative stress and immune stress. CONCLUSION: Our data demonstrates the advantages and value of regionalized and comparative analysis of gene expression in aging animals. Adding to the age-regulated genes already identified in whole animal studies, it provides lists of new regionalized genes to be studied for their functional role in the aging process. This work also emphasizes the need for such experiments to reveal in greater detail the consequences of the transcriptional modifications induced by aging regulatory pathways.


Asunto(s)
Envejecimiento/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , ARN Mensajero/genética , Transcripción Genética , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Perfilación de la Expresión Génica , Cabeza/crecimiento & desarrollo , Masculino , Proteínas Musculares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , Estrés Fisiológico/genética , Estrés Fisiológico/metabolismo , Transmisión Sináptica/genética , Tórax/crecimiento & desarrollo , Tórax/metabolismo
14.
J Alzheimers Dis ; 45(4): 1015-38, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25697708

RESUMEN

Amyloid-ß protein precursor (AßPP) and the microtubule-associated protein tau (MAPT) are the two key players involved in Alzheimer's disease (AD) and are associated with amyloid plaques and neurofibrillary tangles respectively, two key hallmarks of the disease. Besides vertebrate models, Drosophila models have been widely used to understand the complex events leading to AD in relation to aging. Drosophila benefits from the low redundancy of the genome which greatly simplifies the analysis of single gene disruption, sophisticated molecular genetic tools, and reduced cost compared to mammals. The aim of this review is to describe the recent advances in modeling AD using fly and to emphasize some limits of these models. Genetic studies in Drosophila have revealed some key aspects of the normal function of Appl and Tau, the fly homologues of AßPP and MAPT that may be disrupted during AD. Drosophila models have also been useful to uncover or validate several pathological pathways or susceptibility genes, and have been readily implemented in drug screening pipelines. We discuss some limitations of the current models that may arise from differences in structure of Appl and Tau compared to their human counterparts or from missing AßPP or MAPT protein interactors in flies. The advent of new genome modification technologies should allow the development of more realistic fly models and to better understand the relationship between AD and aging, taking advantage of the fly's short lifespan.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Drosophila , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo
15.
PLoS One ; 10(11): e0141920, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26528826

RESUMEN

Aging is commonly described as being a continuous process affecting progressively organisms as time passes. This process results in a progressive decrease in individuals fitness through a wide range of both organismal-decreased motor activity, fertility, resistance to stress-and molecular phenotypes-decreased protein and energy homeostasis, impairment of insulin signaling. In the past 20 years, numerous genes have been identified as playing a major role in the aging process, yet little is known about the events leading to that loss of fitness. We recently described an event characterized by a dramatic increase of intestinal permeability to a blue food dye in aging flies committed to die within a few days. Importantly, flies showing this so called 'Smurf' phenotype are the only ones, among a population, to show various age-related changes and exhibit a high-risk of impending death whatever their chronological age. Thus, these observations suggest that instead of being one continuous phenomenon, aging may be a discontinuous process well described by at least two distinguishable phases. In this paper we addressed this hypothesis by implementing a new 2 Phases of Aging mathematiCal model (2PAC model) to simulate longevity curves based on the simple hypothesis of two consecutive phases of lifetime presenting different properties. We first present a unique equation for each phase and discuss the biological significance of the 3 associated parameters. Then we evaluate the influence of each parameter on the shape of survival curves. Overall, this new mathematical model, based on simple biological observations, is able to reproduce many experimental longevity curves, supporting the existence of 2 phases of aging exhibiting specific properties and separated by a dramatic transition that remains to be characterized. Moreover, it indicates that Smurf survival can be approximated by one single constant parameter for a broad range of genotypes that we have tested under our environmental conditions.


Asunto(s)
Envejecimiento/fisiología , Modelos Biológicos , Animales , Drosophila melanogaster
16.
J Huntingtons Dis ; 4(2): 173-86, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26397898

RESUMEN

BACKGROUND: Huntington's disease (HD) is a Polyglutamine disease caused by the presence of CAG repeats in the first exon of Huntingtin (Htt), a large protein with multiple functions. In addition to neurodegeneration of specific brain regions, notably the striatum, HD also shows alterations in peripheral tissues, such as the heart, skeletal muscles or peripheral endocrine glands. Mutant Huntingtin (mHtt)-driven mitochondrial impairment may underlie some of the CNS and peripheral tissues dysfunctions, especially in tissues with high energy demand such as the heart. OBJECTIVE: The aim of this study is to characterize two new inducible Drosophila HD heart models and to assay the therapeutic potential of methylene blue in these HD models. METHODS: We report the construction of inducible Drosophila HD heart models, expressing two Nter fragments of the protein encompassing either exon 1 or the first 171 amino acids and the characterization of heart phenotypes in vivo. RESULTS: We show that both mHtt fragments are able to impair fly cardiac function with different characteristics. Additionally, expression of mHtt, which was limited to adulthood only, leads to mild heart impairment, as opposed to a strong and age-dependent phenotype observed when mHtt expression was driven during both developmental and adult stages. We report that treatment with methylene blue (MB), a protective compound in mitochondria-related diseases, partially protects the fly's heart against mHtt-induced toxicity, but does not rescue neuronal or glial phenotypes in other fly models of HD. This may be linked to its low penetration through the fly's blood-brain barrier. CONCLUSIONS: Our data suggest that improvement of mitochondrial function by MB, or related compounds, could be an efficient therapeutic strategy to prevent cardiac failure in HD patients.


Asunto(s)
Modelos Animales de Enfermedad , Cardiopatías Congénitas/genética , Enfermedad de Huntington/genética , Azul de Metileno/administración & dosificación , Proteínas Asociadas a Microtúbulos/genética , Animales , Drosophila , Proteínas de Drosophila/genética , Cardiopatías Congénitas/prevención & control , Proteína Huntingtina , Enfermedad de Huntington/complicaciones , Proteínas Asociadas a Microtúbulos/metabolismo , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos
17.
Oxid Med Cell Longev ; 2015: 565140, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26523199

RESUMEN

Friedreich's ataxia (FA) is a rare neurodegenerative disease which is very debilitating for the patients who progressively lose their autonomy. The lack of efficient therapeutic treatment of the disease strongly argues for urgent need to search for new active compounds that may stop the progression of the disease or prevent the appearance of the symptoms when the genetic defect is diagnosed early enough. In the present study, we used a yeast strain with a deletion of the frataxin homologue gene as a model of FA cells in a primary screen of two chemical libraries, a fraction of the French National Chemical Library (5500 compounds) and the Prestwick collection (880 compounds). We ran a secondary screen on Drosophila melanogaster flies expressing reduced levels of frataxin during larval development. Half of the compounds selected in yeast appeared to be active in flies in this developmental paradigm, and one of the two compounds with highest activities in this assay partially rescued the heart dilatation phenotype resulting from heart specific depletion of frataxin. The unique complementarity of these two frataxin-deficient models, unicellular and multicellular, appears to be very efficient to select new compounds with improved selectivity, bringing significant perspectives towards improvements in FA therapy.


Asunto(s)
Drosophila/metabolismo , Proteínas de Unión a Hierro/genética , Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequeñas/química , Animales , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Corazón/efectos de los fármacos , Proteínas de Unión a Hierro/metabolismo , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/metabolismo , Microscopía por Video , Rafinosa/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Frataxina
18.
BMC Genomics ; 5: 74, 2004 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-15458575

RESUMEN

BACKGROUND: During their life, multicellular organisms are challenged with oxidative stress. It is generated by several reactive oxygen species (ROS), may limit lifespan and has been related to several human diseases. ROS can generate a wide variety of defects in many cellular components and thus the response of the organism challenged with oxidative stress may share some features with other stress responses. Conversely, in spite of recent progress, a complete functional analysis of the transcriptional responses to different oxidative stresses in model organisms is still missing. In addition, the functional significance of observed transcriptional changes is still elusive. RESULTS: We used oligonucleotide microarrays to address the specificities of transcriptional responses of adult Drosophila to different stresses induced by paraquat and H2O2, two oxidative stressors, and by tunicamycin which induces an endoplasmic reticulum (ER) stress. Both specific and common responses to the three stressors were observed and whole genome functional analysis identified several important classes of stress responsive genes. Within some functional classes, we observed that isozymes do not all behave similarly, which may reflect unsuspected functional specificities. Moreover, genetic experiments performed on a subset of lines bearing mutations in genes identified in microarray experiments showed that a significant number of these mutations may affect resistance of adult Drosophila to oxidative stress. CONCLUSIONS: A long term common stress response to paraquat- or H2O2-induced oxidative stresses and ER stress is observed for a significant number of genes. Besides this common response, the unexpected complexity of the stress responses to oxidative and ER stresses in Drosophila, suggest significant specificities in protective properties between genes associated to the same functional classes. According to our functional analysis, a large part of the genome may play a role in protective mechanisms against oxidative stress in Drosophila.


Asunto(s)
Drosophila melanogaster/genética , Genoma , Estrés Oxidativo/genética , Animales , Clasificación/métodos , Análisis por Conglomerados , Sistemas de Computación , Drosophila melanogaster/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/estadística & datos numéricos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Genes de Insecto/efectos de los fármacos , Genes de Insecto/fisiología , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Paraquat/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
19.
Free Radic Biol Med ; 33(9): 1250-9, 2002 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12398933

RESUMEN

Oxidative damage is thought to be a major causal factor of aging, and is implicated in several human pathologies such as Alzheimer's and Parkinson's diseases. Nevertheless the genetical determinants of in vivo oxidative stress response are still poorly understood. To identify cellular components whose deregulation leads to oxidative stress resistance, we performed a genetic screen in Drosophila melanogaster. We thus identified in this screen Drosophila Inositol 1,4,5-triphosphate kinase I (D-IP3K1), a Drosophila gene homologous to mammalian IP3Ks. In vertebrates, IP3Ks phosphorylate the second messenger Inositol 1,4,5-triphosphate (IP3) to produce Inositol 1,3,4,5 tetrakiphosphate (IP4). IP3 binding to its receptor (IP3R) triggers Ca(2+) release from the endoplasmic reticulum (ER) to the cytosol, whereas IP4 physiological role remains elusive. We show here that ubiquitous overexpression of D-IP3K1 confers resistance of flies to H(2)O(2)- but not to paraquat-induced oxidative stress. Additional genetic analysis with other members of IP3 and IP4 signaling pathways led us to propose that the D-IP3K1 protective effect is mainly mediated through the reduction of IP3 level (which probably results in reduced Ca(2+) release from internal stores), rather than through the rise of IP4 level.


Asunto(s)
Drosophila melanogaster/enzimología , Peróxido de Hidrógeno/farmacología , Oxidantes/farmacología , Estrés Oxidativo , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Animales , Animales Modificados Genéticamente , Northern Blotting , Calcio/metabolismo , Catalasa/metabolismo , Drosophila melanogaster/genética , Resistencia a Medicamentos , Femenino , Genotipo , Herbicidas/farmacología , Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Paraquat/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal
20.
Front Genet ; 3: 226, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23115562

RESUMEN

Late onset neurodegenerative diseases represent a major public health concern as the population in many countries ages. Both frequent diseases such as Alzheimer disease (AD, 14% incidence for 80-84 year-old Europeans) or Parkinson disease (PD, 1.4% prevalence for >55 years old) share, with other low-incidence neurodegenerative pathologies such as spinocerebellar ataxias (SCAs, 0.01% prevalence) and frontotemporal lobar degeneration (FTLD, 0.02% prevalence), a lack of efficient treatment in spite of important research efforts. Besides significant progress, studies with animal models have revealed unexpected complexities in the degenerative process, emphasizing a need to better understand the underlying pathological mechanisms. Recently, microRNAs (miRNAs), a class of small regulatory non-coding RNAs, have been implicated in some neurodegenerative diseases. The current data supporting a role of miRNAs in PD, tauopathies, dominant ataxias, and FTLD will first be discussed to emphasize the different levels of the pathological processes which may be affected by miRNAs. To investigate a potential involvement of miRNA dysregulation in the early stages of these neurodegenerative diseases we have used Drosophila models for seven diseases (PD, 3 FTLD, 3 dominant ataxias) that recapitulate many features of the human diseases. We performed deep sequencing of head small RNAs after 3 days of pathological protein expression in the fly head neurons. We found no evidence for a statistically significant difference in miRNA expression in this early stage of the pathological process. In addition, we could not identify small non-coding CAG repeat RNAs (sCAG) in polyQ disease models. Thus our data suggest that transcriptional deregulation of miRNAs or sCAG is unlikely to play a significant role in the initial stages of neurodegenerative diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA