Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Genet ; 18(5): e1010013, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35605015

RESUMEN

Each day and in conjunction with ambient daylight conditions, neuropeptide PDF regulates the phase and amplitude of locomotor activity rhythms in Drosophila through its receptor, PDFR, a Family B G protein-coupled receptor (GPCR). We studied the in vivo process by which PDFR signaling turns off, by converting as many as half of the 28 potential sites of phosphorylation in its C terminal tail to a non-phosphorylatable residue (alanine). We report that many such sites are conserved evolutionarily, and their conversion creates a specific behavioral syndrome opposite to loss-of-function phenotypes previously described for pdfr. That syndrome includes increases in the amplitudes of both Morning and Evening behavioral peaks, as well as multi-hour delays of the Evening phase. The precise behavioral effects were dependent on day-length, and most effects mapped to conversion of only a few, specific serine residues near the very end of the protein and specific to its A isoform. Behavioral phase delays of the Evening activity under entraining conditions predicted the phase of activity cycles under constant darkness. The behavioral phenotypes produced by the most severe PDFR variant were ligand-dependent in vivo, and not a consequence of changes to their pharmacological properties, nor of changes in their surface expression, as measured in vitro. The mechanisms underlying termination of PDFR signaling are complex, subject to regulation that is modified by season, and central to a better understanding of the peptidergic modulation of behavior.


Asunto(s)
Proteínas de Drosophila , Neuropéptidos , Animales , Ritmo Circadiano/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo
2.
Nucleic Acids Res ; 43(4): 2199-215, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25634895

RESUMEN

Neuroendocrine (NE) cells use large dense core vesicles (LDCVs) to traffic, process, store and secrete neuropeptide hormones through the regulated secretory pathway. The dimmed (DIMM) basic helix-loop-helix transcription factor of Drosophila controls the level of regulated secretory activity in NE cells. To pursue its mechanisms, we have performed two independent genome-wide analyses of DIMM's activities: (i) in vivo chromatin immunoprecipitation (ChIP) to define genomic sites of DIMM occupancy and (ii) deep sequencing of purified DIMM neurons to characterize their transcriptional profile. By this combined approach, we showed that DIMM binds to conserved E-boxes in enhancers of 212 genes whose expression is enriched in DIMM-expressing NE cells. DIMM binds preferentially to certain E-boxes within first introns of specific gene isoforms. Statistical machine learning revealed that flanking regions of putative DIMM binding sites contribute to its DNA binding specificity. DIMM's transcriptional repertoire features at least 20 LDCV constituents. In addition, DIMM notably targets the pro-secretory transcription factor, creb-A, but significantly, DIMM does not target any neuropeptide genes. DIMM therefore prescribes the scale of secretory activity in NE neurons, by a systematic control of both proximal and distal points in the regulated secretory pathway.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Drosophila/metabolismo , Células Neuroendocrinas/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Inmunoprecipitación de Cromatina , Secuencia Conservada , Drosophila/genética , Drosophila/metabolismo , Elementos E-Box , Genoma de los Insectos , Secuenciación de Nucleótidos de Alto Rendimiento , Vías Secretoras/genética , Análisis de Secuencia de ADN , Transactivadores/metabolismo , Transcriptoma
3.
Nat Commun ; 13(1): 772, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140224

RESUMEN

Embryogenesis depends on a tightly regulated balance between mitosis, differentiation, and morphogenesis. Understanding how the embryo uses a relatively small number of proteins to transition between growth and morphogenesis is a central question of developmental biology, but the mechanisms controlling mitosis and differentiation are considered to be fundamentally distinct. Here we show the mitotic kinase Polo, which regulates all steps of mitosis in Drosophila, also directs cellular morphogenesis after cell cycle exit. In mitotic cells, the Aurora kinases activate Polo to control a cytoskeletal regulatory module that directs cytokinesis. We show that in the post-mitotic mesoderm, the control of Polo activity transitions from the Aurora kinases to the uncharacterized kinase Back Seat Driver (Bsd), where Bsd and Polo cooperate to regulate muscle morphogenesis. Polo and its effectors therefore direct mitosis and cellular morphogenesis, but the transition from growth to morphogenesis is determined by the spatiotemporal expression of upstream activating kinases.


Asunto(s)
Drosophila/metabolismo , Mitosis , Morfogénesis/fisiología , Fosfotransferasas/metabolismo , Animales , Aurora Quinasas/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , División del Núcleo Celular , Citocinesis , Drosophila/genética , Proteínas de Drosophila , Regulación del Desarrollo de la Expresión Génica , Proteínas Asociadas a Microtúbulos , Morfogénesis/genética , Fosfotransferasas/genética , Huso Acromático/metabolismo
4.
Vet Ther ; 3(3): 270-80, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12447834

RESUMEN

Cyclooxygenase (COX) performs the critical initial reaction in the arachidonic metabolic cascade, leading to formation of proinflammatory prostaglandins, thromboxanes, and prostacyclins. The discovery of a second COX isoform (COX-2) associated with inflammation led to agents that selectively inhibit COX-2. Cyclooxygenase-2 inhibitors are also being developed for canine applications. To assess the compound potency on canine enzymes, canine COX-1 and COX-2 were cloned, expressed, and purified. Cyclooxygenase-1 was cloned from a canine kidney complementary DNA (cDNA) library, with 96 % sequence homology to human COX-1. Cyclooxygenase-2 was cloned from canine kidney and lipopolysaccharide-stimulated macrophage cDNA libraries, with a 93 % sequence homology to human COX-2. The arachidonic acid Michaelis constants for canine COX-1 and COX-2 were 4.8 and 6.6 micrometer, respectively, compared with 9.6 and 10.2 micrometer for ovine. Inhibition results indicated that, for all compounds tested, there was no significant difference between potencies determined for canine enzymes and those for human enzymes.


Asunto(s)
Inhibidores de la Ciclooxigenasa/farmacología , Perros/genética , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Prostaglandina-Endoperóxido Sintasas/genética , Secuencia de Aminoácidos , Animales , Antiinflamatorios no Esteroideos/farmacología , Clonación Molecular , Ciclooxigenasa 1 , Ciclooxigenasa 2 , Inhibidores de la Ciclooxigenasa 2 , Relación Dosis-Respuesta a Droga , Expresión Génica , Biblioteca de Genes , Humanos , Isoenzimas/biosíntesis , Isoenzimas/metabolismo , Riñón/enzimología , Proteínas de la Membrana , Reacción en Cadena de la Polimerasa , Prostaglandina-Endoperóxido Sintasas/biosíntesis , Prostaglandina-Endoperóxido Sintasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
5.
BMJ ; 353: i2420, 2016 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-27130492
6.
Mol Cell Biol ; 28(1): 410-21, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17967878

RESUMEN

The basic helix-loop-helix (bHLH) protein DIMMED (DIMM) supports the differentiation of secretory properties in numerous peptidergic cells of Drosophila melanogaster. DIMM is coexpressed with diverse amidated neuropeptides and with the amidating enzyme peptidylglycine alpha-hydroxylating monooxygenase (PHM) in approximately 300 cells of the late embryo. Here we confirm that DIMM has transcription factor activity in transfected HEK 293 cells and that the PHM gene is a direct target. The mammalian DIMM orthologue MIST1 also transactivated the PHM gene. DIMM activity was dependent on the basic region of the protein and on the sequences of three E-box sites within PHM's first intron; the sites make different contributions to the total activity. These data suggest a model whereby the three E boxes interact cooperatively and independently to produce high PHM transcriptional activation. This DIMM-controlled PHM regulatory region displayed similar properties in vivo. Spatially, its expression mirrored that of the DIMM protein, and its activity was largely dependent on dimm. Further, in vivo expression was highly dependent on the sequences of the same three E boxes. This study supports the hypothesis that DIMM is a master regulator of a peptidergic cell fate in Drosophila and provides a detailed transcriptional mechanism of DIMM action on a defined target gene.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Oxigenasas de Función Mixta/metabolismo , Complejos Multienzimáticos/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Activación Enzimática , Regulación de la Expresión Génica , Humanos , Intrones/genética , Oxigenasas de Función Mixta/genética , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Unión Proteica , Transcripción Genética/genética
7.
J Exp Biol ; 208(Pt 7): 1239-46, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15781884

RESUMEN

The Drosophila orphan G protein-coupled receptor encoded by CG17415 is related to members of the calcitonin receptor-like receptor (CLR) family. In mammals, signaling from CLR receptors depend on accessory proteins, namely the receptor activity modifying proteins (RAMPs) and receptor component protein (RCP). We tested the possibility that this Drosophila CLR might also require accessory proteins for proper function and we report that co-expression of the mammalian or Drosophila RCP or mammalian RAMPs permitted neuropeptide diuretic hormone 31 (DH31) signaling from the CG17415 receptor. RAMP subtype expression did not alter the pharmacological profile of CG17415 activation. CG17415 antibodies revealed expression within the principal cells of Malpighian tubules, further implicating DH31 as a ligand for this receptor. Immunostaining in the brain revealed an unexpected convergence of two distinct DH signaling pathways. In both the larval and adult brain, most DH31 receptor-expressing neurons produce the neuropeptide corazonin, and also express the CRFR-related receptor CG8422, which is a receptor for the neuropeptide diuretic hormone 44 (DH44). There is extensive convergence of CRF and CGRP signaling within vertebrates and we report a striking parallel in Drosophila involving DH44 (CRF) and DH31 (CGRP). Therefore, it appears that both the molecular details as well as the functional organization of CGRP signaling have been conserved.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Drosophila/metabolismo , Proteínas de Insectos/metabolismo , Receptores de Calcitonina/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Animales , Encéfalo/metabolismo , Proteína Similar al Receptor de Calcitonina , Calcio/metabolismo , AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Fluorescencia , Inmunohistoquímica , Hormonas de Insectos/metabolismo , Túbulos de Malpighi/metabolismo , Modelos Biológicos , Neuropéptidos/metabolismo
8.
J Pharmacol Exp Ther ; 312(3): 1206-12, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15494548

RESUMEN

The discovery of a second isoform of cyclooxygenase (COX) led to the search for compounds that could selectively inhibit COX-2 in humans while sparing prostaglandin formation from COX-1. Celecoxib and rofecoxib were among the molecules developed from these efforts. We report here the pharmacological properties of a third selective COX-2 inhibitor, valdecoxib, which is the most potent and in vitro selective of the marketed COX-2 inhibitors that we have studied. Recombinant human COX-1 and COX-2 were used to screen for new highly potent and in vitro selective COX-2 inhibitors and compare kinetic mechanisms of binding and enzyme inhibition with other COX inhibitors. Valdecoxib potently inhibits recombinant COX-2, with an IC(50) of 0.005 microM; this compares with IC values of 0.05 microM for celecoxib, 0.5 microM for rofecoxib, and 5 microM for etoricoxib. Unique binding interactions of valdecoxib with COX-2 translate into a fast rate of inactivation of COX-2 (110,000 M/s compared with 7000 M/s for rofecoxib and 80 M/s for etoricoxib). The overall saturation binding affinity for COX-2 of valdecoxib is 2.6 nM (compared with 1.6 nM for celecoxib, 51 nM for rofecoxib, and 260 nM for etoricoxib), with a slow off-rate (t(1/2) approximately 98 min). Valdecoxib inhibits COX-1 in a competitive fashion only at very high concentrations (IC(50) = 150 microM). Collectively, these data provide a mechanistic basis for the potency and in vitro selectivity of valdecoxib for COX-2. Valdecoxib showed similar activity in the human whole-blood COX assay (COX-2 IC(50) = 0.24 microM; COX-1 IC(50) = 21.9 microM). We also determined whether this in vitro potency and selectivity translated to significant potency in vivo. In rats, valdecoxib demonstrated marked potency in acute and chronic models of inflammation (air pouch ED(50) = 0.06 mg/kg; paw edema ED(50) = 5.9 mg/kg; adjuvant arthritis ED(50) = 0.03 mg/kg). In these same animals, COX-1 was spared at doses greater than 200 mg/kg. These data provide a basis for the observed potent anti-inflammatory activity of valdecoxib in humans.


Asunto(s)
Inhibidores de la Ciclooxigenasa/farmacología , Isoxazoles/farmacología , Prostaglandina-Endoperóxido Sintasas/efectos de los fármacos , Sulfonamidas/farmacología , Animales , Antiinflamatorios no Esteroideos/farmacología , Artritis Experimental/tratamiento farmacológico , Ciclooxigenasa 1 , Ciclooxigenasa 2 , Inhibidores de la Ciclooxigenasa 2 , Humanos , Hiperalgesia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Masculino , Proteínas de la Membrana , Ratas , Ratas Endogámicas Lew , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA