Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(6): 958-974, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-34635923

RESUMEN

Mutations in mitochondrial DNA encoded subunit of ATP synthase, MT-ATP6, are frequent causes of neurological mitochondrial diseases with a range of phenotypes from Leigh syndrome and NARP to ataxias and neuropathies. Here we investigated the functional consequences of an unusual heteroplasmic truncating mutation m.9154C>T in MT-ATP6, which caused peripheral neuropathy, ataxia and IgA nephropathy. ATP synthase not only generates cellular ATP, but its dimerization is required for mitochondrial cristae formation. Accordingly, the MT-ATP6 truncating mutation impaired the assembly of ATP synthase and disrupted cristae morphology, supporting our molecular dynamics simulations that predicted destabilized a/c subunit subcomplex. Next, we modeled the effects of the truncating mutation using patient-specific induced pluripotent stem cells. Unexpectedly, depending on mutation heteroplasmy level, the truncation showed multiple threshold effects in cellular reprogramming, neurogenesis and in metabolism of mature motor neurons (MN). Interestingly, MN differentiation beyond progenitor stage was impaired by Notch hyperactivation in the MT-ATP6 mutant, but not by rotenone-induced inhibition of mitochondrial respiration, suggesting that altered mitochondrial morphology contributed to Notch hyperactivation. Finally, we also identified a lower mutation threshold for a metabolic shift in mature MN, affecting lactate utilization, which may be relevant for understanding the mechanisms of mitochondrial involvement in peripheral motor neuropathies. These results establish a critical and disease-relevant role for ATP synthase in human cell fate decisions and neuronal metabolism.


Asunto(s)
Heteroplasmia , ATPasas de Translocación de Protón Mitocondriales , Adenosina Trifosfato , Ataxia/genética , ADN Mitocondrial/genética , Humanos , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Neuronas Motoras/metabolismo , Mutación
2.
Hum Mol Genet ; 26(8): 1432-1443, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28158749

RESUMEN

De novo mutations in ATAD3A (ATPase family AAA-domain containing protein 3A) were recently found to cause a neurological syndrome with developmental delay, hypotonia, spasticity, optic atrophy, axonal neuropathy, and hypertrophic cardiomyopathy. Using whole-exome sequencing, we identified a dominantly inherited heterozygous variant c.1064G > A (p.G355D) in ATAD3A in a mother presenting with hereditary spastic paraplegia (HSP) and axonal neuropathy and her son with dyskinetic cerebral palsy, both with disease onset in childhood. HSP is a clinically and genetically heterogeneous disorder of the upper motor neurons. Symptoms beginning in early childhood may resemble spastic cerebral palsy. The function of ATAD3A, a mitochondrial inner membrane AAA ATPase, is yet undefined. AAA ATPases form hexameric rings, which are catalytically dependent on the co-operation of the subunits. The dominant-negative patient mutation affects the Walker A motif, which is responsible for ATP binding in the AAA module of ATAD3A, and we show that the recombinant mutant ATAD3A protein has a markedly reduced ATPase activity. We further show that overexpression of the mutant ATAD3A fragments the mitochondrial network and induces lysosome mass. Similarly, we observed altered dynamics of the mitochondrial network and increased lysosomes in patient fibroblasts and neurons derived through differentiation of patient-specific induced pluripotent stem cells. These alterations were verified in patient fibroblasts to associate with upregulated basal autophagy through mTOR inactivation, resembling starvation. Mutations in ATAD3A can thus be dominantly inherited and underlie variable neurological phenotypes, including HSP, with intrafamiliar variability. This finding extends the group of mitochondrial inner membrane AAA proteins associated with spasticity.


Asunto(s)
Adenosina Trifosfatasas/genética , Parálisis Cerebral/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Paraplejía Espástica Hereditaria/genética , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/biosíntesis , Adolescente , Adulto , Axones/metabolismo , Axones/patología , Parálisis Cerebral/patología , Preescolar , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Proteínas de la Membrana/biosíntesis , Mitocondrias/metabolismo , Mitocondrias/patología , Dinámicas Mitocondriales/genética , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/patología , Proteínas Mitocondriales/biosíntesis , Mutación , Paraplejía Espástica Hereditaria/patología , Serina-Treonina Quinasas TOR/genética
3.
Nature ; 471(7336): 58-62, 2011 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-21368824

RESUMEN

The mechanisms underlying the low efficiency of reprogramming somatic cells into induced pluripotent stem (iPS) cells are poorly understood. There is a clear need to study whether the reprogramming process itself compromises genomic integrity and, through this, the efficiency of iPS cell establishment. Using a high-resolution single nucleotide polymorphism array, we compared copy number variations (CNVs) of different passages of human iPS cells with their fibroblast cell origins and with human embryonic stem (ES) cells. Here we show that significantly more CNVs are present in early-passage human iPS cells than intermediate passage human iPS cells, fibroblasts or human ES cells. Most CNVs are formed de novo and generate genetic mosaicism in early-passage human iPS cells. Most of these novel CNVs rendered the affected cells at a selective disadvantage. Remarkably, expansion of human iPS cells in culture selects rapidly against mutated cells, driving the lines towards a genetic state resembling human ES cells.


Asunto(s)
Reprogramación Celular/genética , Variaciones en el Número de Copia de ADN/genética , Células Madre Pluripotentes Inducidas/metabolismo , Selección Genética , Línea Celular , Sitios Frágiles del Cromosoma/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Haplotipos/genética , Humanos , Hibridación Fluorescente in Situ , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/patología , Mosaicismo , Mutagénesis/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple/genética , Selección Genética/genética
4.
Exp Cell Res ; 319(17): 2535-44, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23954819

RESUMEN

Activin/Nodal and Wnt signaling are known to play important roles in the regional specification of endoderm. Here we have investigated the effect of the length of stimulation with Activin A plus Wnt3a on the development of hepatic and pancreatic progenitors from the definitive endoderm (DE) cells derived from human pluripotent stem cells (hPSC). We show that DE-cells derived from hPSC with 3 days high Activin A and Wnt3a treatment were able to differentiate further into both tested endodermal lineages. When prolonging the DE-induction protocol from 3 to 5 or 7 days, almost pure DE-marker positive cell populations were obtained. However, these cells had an impaired pancreatic differentiation capacity, while they still developed into hepatocyte-like cells. Further propagation of the DE-cells in the presence of Wnt3a and Activin A led to the complete loss of differentiation capacity into hepatic or pancreatic lineages. When Wnt3a was removed after 24h from the initiation of the differentiation, the cells were able to differentiate into PDX1+/NKX6.1+ pancreatic progenitors even with longer DE induction time while efficiency of hepatic differentiation was lower. Our results suggest that both the length and the timing of Wnt3a treatment during DE induction are crucial for the final differentiation outcome. Although it is possible to derive apparently pure DE cells with prolonged Activin A/Wnt-stimulation, their progenitor capacity is restricted to a limited time window.


Asunto(s)
Activinas/farmacología , Diferenciación Celular/efectos de los fármacos , Endodermo/citología , Proteína Wnt3A/farmacología , Linaje de la Célula , Inducción Embrionaria , Hepatocitos/citología , Hepatocitos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Páncreas/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
5.
Duodecim ; 130(8): 785-92, 2014.
Artículo en Fi | MEDLINE | ID: mdl-24822328

RESUMEN

Pluripotent stem cells are capable of differentiating into cells of any tissue. The fact that iPS cell lines can be produced from skin cells or blood cells and directed to differentiate into a desired direction makes it possible to investigate e.g. myocardial or nerve cells having a disease-associated genotype. This will enable the development of experimental models of disease mechanisms and also apply them to drug screening, which may allow the development of novel types of treatment. In the future it may become possible to replace injured cells of a patient with autologous iPS cell derived transplants.


Asunto(s)
Investigación Biomédica , Células Madre Pluripotentes Inducidas/fisiología , Técnicas de Cultivo de Célula , Diferenciación Celular , Línea Celular , Humanos
6.
Cell Reprogram ; 25(3): 88-90, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37155628

RESUMEN

By screening a CRISPR knockout library for mouse pluripotent reprogramming roadblock genes, Kaemena et al. identify the KRAB-ZFP factor Zfp266 as a suppressor of efficient reprogramming. Furthermore, by analyzing DNA binding and chromatin openness, the authors found that ZFP266 has a role in suppressing reprogramming by targeting the B1 SINE sequences for silencing.


Asunto(s)
Reprogramación Celular , Animales , Ratones
7.
iScience ; 26(3): 106172, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36876139

RESUMEN

The paired-like homeobox transcription factor LEUTX is expressed in human preimplantation embryos between the 4- and 8-cell stages, and then silenced in somatic tissues. To characterize the function of LEUTX, we performed a multiomic characterization of LEUTX using two proteomics methods and three genome-wide sequencing approaches. Our results show that LEUTX stably interacts with the EP300 and CBP histone acetyltransferases through its 9 amino acid transactivation domain (9aaTAD), as mutation of this domain abolishes the interactions. LEUTX targets genomic cis-regulatory sequences that overlap with repetitive elements, and through these elements it is suggested to regulate the expression of its downstream genes. We find LEUTX to be a transcriptional activator, upregulating several genes linked to preimplantation development as well as 8-cell-like markers, such as DPPA3 and ZNF280A. Our results support a role for LEUTX in preimplantation development as an enhancer binding protein and as a potent transcriptional activator.

8.
Stem Cell Reports ; 17(7): 1743-1756, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35777358

RESUMEN

Embryonic genome activation (EGA) is critical for embryonic development. However, our understanding of the regulatory mechanisms of human EGA is still incomplete. Human embryonic stem cells (hESCs) are an established model for studying developmental processes, but they resemble epiblast and are sub-optimal for modeling EGA. DUX4 regulates human EGA by inducing cleavage-stage-specific genes, while it also induces cell death. We report here that a short-pulsed expression of DUX4 in primed hESCs activates an EGA-like gene expression program in up to 17% of the cells, retaining cell viability. These DUX4-induced cells resembled eight-cell stage blastomeres and were named induced blastomere-like (iBM) cells. The iBM cells showed marked reduction of POU5F1 protein, as previously observed in mouse two-cell-like cells. Finally, the iBM cells were successfully enriched using an antibody against NaPi2b (SLC34A2), which is expressed in human blastomeres. The iBM cells provide an improved model system to study human EGA transcriptome.


Asunto(s)
Blastómeros , Proteínas de Homeodominio/metabolismo , Células Madre Embrionarias Humanas , Animales , Blastómeros/metabolismo , Desarrollo Embrionario/genética , Femenino , Genes Homeobox , Genoma Humano , Proteínas de Homeodominio/genética , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ratones , Embarazo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/metabolismo
9.
Stem Cell Reports ; 17(2): 413-426, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35063129

RESUMEN

Conventional reprogramming methods rely on the ectopic expression of transcription factors to reprogram somatic cells into induced pluripotent stem cells (iPSCs). The forced expression of transcription factors may lead to off-target gene activation and heterogeneous reprogramming, resulting in the emergence of alternative cell types and aberrant iPSCs. Activation of endogenous pluripotency factors by CRISPR activation (CRISPRa) can reduce this heterogeneity. Here, we describe a high-efficiency reprogramming of human somatic cells into iPSCs using optimized CRISPRa. Efficient reprogramming was dependent on the additional targeting of the embryo genome activation-enriched Alu-motif and the miR-302/367 locus. Single-cell transcriptome analysis revealed that the optimized CRISPRa reprogrammed cells more directly and specifically into the pluripotent state when compared to the conventional reprogramming method. These findings support the use of CRISPRa for high-quality pluripotent reprogramming of human cells.


Asunto(s)
Reprogramación Celular/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Elementos Alu/genética , Perfilación de la Expresión Génica , Sitios Genéticos , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/genética , Análisis de la Célula Individual
10.
Methods Mol Biol ; 2239: 175-198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33226620

RESUMEN

CRISPR-mediated gene activation (CRISPRa) can be used to target endogenous genes for activation. By targeting pluripotency-associated reprogramming factors, human fibroblasts can be reprogrammed into induced pluripotent stem cells (iPSCs). Here, we describe a method for the derivation of iPSCs from human fibroblasts using episomal plasmids encoding CRISPRa components. This chapter also provides procedure to assemble guide RNA cassettes and generation of multiplexed guide plasmids for readers who want to design their own guide RNAs.


Asunto(s)
Sistemas CRISPR-Cas/genética , Reprogramación Celular/genética , Células Madre Pluripotentes Inducidas/citología , Factores de Transcripción/metabolismo , Células Cultivadas , Electroporación/métodos , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Plásmidos/genética , Plásmidos/aislamiento & purificación , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/genética
11.
Stem Cell Reports ; 16(12): 3064-3075, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34822772

RESUMEN

Human induced pluripotent stem cells (hiPSCs) allow in vitro study of genetic diseases and hold potential for personalized stem cell therapy. Gene editing, precisely modifying specifically targeted loci, represents a valuable tool for different hiPSC applications. This is especially useful in monogenic diseases to dissect the function of unknown mutations or to create genetically corrected, patient-derived hiPSCs. Here we describe a highly efficient method for simultaneous base editing and reprogramming of fibroblasts employing a CRISPR-Cas9 adenine base editor. As a proof of concept, we apply this approach to generate gene-edited hiPSCs from skin biopsies of four patients carrying a Finnish-founder pathogenic point mutation in either NOTCH3 or LDLR genes. We also show LDLR activity restoration after the gene correction. Overall, this method yields tens of gene-edited hiPSC monoclonal lines with unprecedented efficiency and robustness while considerably reducing the cell culture time and thus the risk for in vitro alterations.


Asunto(s)
Reprogramación Celular/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Edición Génica , Secuencia de Bases , Células Cultivadas , Endodermo/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Fenotipo , ARN/genética , Receptor Notch3/genética , Receptores de LDL/genética , Transgenes
12.
Mol Cell Biol ; 27(1): 244-52, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17074808

RESUMEN

Myotilin, palladin, and myopalladin form a novel small subfamily of cytoskeletal proteins that contain immunoglobulin-like domains. Myotilin is a thin filament-associated protein localized at the Z-disk of skeletal and cardiac muscle cells. The direct binding to F-actin, efficient cross-linking of actin filaments, and prevention of induced disassembly of filaments are key roles of myotilin that are thought to be involved in structural maintenance and function of the sarcomere. Missense mutations in the myotilin-encoding gene cause dominant limb girdle muscular dystrophy type 1A and spheroid body myopathy and are the molecular defect that can cause myofibrillar myopathy. Here we describe the generation and analysis of mice that lack myotilin, myo(-/-) mice. Surprisingly, myo(-/-) mice maintain normal muscle sarcomeric and sarcolemmal integrity. Also, loss of myotilin does not cause alterations in the heart or other organs of newborn or adult myo(-/-) mice. The mice develop normally and have a normal life span, and their muscle capacity does not significantly differ from wild-type mice even after prolonged physical stress. The results suggest that either myotilin does not participate in muscle development and basal function maintenance or other proteins serve as structural and functional compensatory molecules when myotilin is absent.


Asunto(s)
Eliminación de Gen , Regulación de la Expresión Génica , Proteínas Musculares/fisiología , Músculos/fisiología , Actinas/metabolismo , Animales , Genotipo , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos , Músculo Esquelético/metabolismo , Músculos/metabolismo , Mutación Missense , Miocardio/metabolismo , Estructura Terciaria de Proteína , Sarcómeros/metabolismo , Factores de Tiempo
13.
Neuron ; 35(4): 671-80, 2002 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12194867

RESUMEN

The mammalian auditory sensory epithelium, the organ of Corti, comprises the hair cells and supporting cells that are pivotal for hearing function. The origin and development of their precursors are poorly understood. Here we show that loss-of-function mutations in mouse fibroblast growth factor receptor 1 (Fgfr1) cause a dose-dependent disruption of the organ of Corti. Full inactivation of Fgfr1 in the inner ear epithelium by Foxg1-Cre-mediated deletion leads to an 85% reduction in the number of auditory hair cells. The primary cause appears to be reduced precursor cell proliferation in the early cochlear duct. Thus, during development, FGFR1 is required for the generation of the precursor pool, which gives rise to the auditory sensory epithelium. Our data also suggest that FGFR1 might have a distinct later role in intercellular signaling within the differentiating auditory sensory epithelium.


Asunto(s)
Comunicación Celular/genética , Diferenciación Celular/genética , División Celular/genética , Células Ciliadas Auditivas/anomalías , Mutación/genética , Proteínas Tirosina Quinasas Receptoras/deficiencia , Receptores de Factores de Crecimiento de Fibroblastos/deficiencia , Células Madre/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Calbindinas , Muerte Celular/genética , Proteínas de Unión al ADN/genética , Femenino , Feto , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción Forkhead , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica/fisiología , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/ultraestructura , Integrasas/genética , Masculino , Ratones , Ratones Mutantes , Proteínas del Tejido Nervioso/genética , Isoformas de Proteínas/genética , ARN Mensajero/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos/genética , Proteína G de Unión al Calcio S100/metabolismo , Transducción de Señal/genética , Células Madre/ultraestructura , Factores de Transcripción/metabolismo , Proteínas Virales/genética
14.
Nat Commun ; 9(1): 2643, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29980666

RESUMEN

CRISPR-Cas9-based gene activation (CRISPRa) is an attractive tool for cellular reprogramming applications due to its high multiplexing capacity and direct targeting of endogenous loci. Here we present the reprogramming of primary human skin fibroblasts into induced pluripotent stem cells (iPSCs) using CRISPRa, targeting endogenous OCT4, SOX2, KLF4, MYC, and LIN28A promoters. The low basal reprogramming efficiency can be improved by an order of magnitude by additionally targeting a conserved Alu-motif enriched near genes involved in embryo genome activation (EEA-motif). This effect is mediated in part by more efficient activation of NANOG and REX1. These data demonstrate that human somatic cells can be reprogrammed into iPSCs using only CRISPRa. Furthermore, the results unravel the involvement of EEA-motif-associated mechanisms in cellular reprogramming.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Reprogramación Celular/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Elementos Alu/genética , Secuencia de Bases , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Factor 4 Similar a Kruppel , Masculino , Proteína Homeótica Nanog/metabolismo , Células-Madre Neurales/metabolismo , Motivos de Nucleótidos/genética , ARN Guía de Kinetoplastida/metabolismo , Transcripción Genética
15.
Int J Dev Biol ; 49(7): 797-805, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16172976

RESUMEN

Branchial arch development involves dynamic interactions between neural crest cells as well as ectodermal, endodermal and mesodermal cell populations. Despite their importance and evolutionary conservation, the intercellular interactions guiding the early development of the branchial arches are still poorly understood. We have here studied fibroblast growth factor (FGF) signalling in early pharyngeal development. In mice homozygous for a hypomorphic allele of Fgfr1, neural crest cells migrating from the hindbrain mostly fail to enter the second branchial arch. This defect is non-cell-autonomous suggesting that Fgfr1 provides a permissive environment for neural crest cell migration. Here we demonstrate localized down-regulation of the expression of the FGF responsive gene, Sprouty1 in the epithelium covering the presumptive second branchial arch of hypomorphic Fgfr1 mutants. This appears to result in a failure to establish an ectodermal signalling center expressing Fgf3 and Fgf15. We also studied differentiation of the ectoderm in the second branchial arch region. Development of the geniculate placode as well as the VIIth cranial ganglion is affected in Fgfr1 hypomorphs. Our results suggest that Fgfr1 is important for localized signalling in the pharyngeal ectoderm and consequently for normal tissue interactions in the developing second branchial arch.


Asunto(s)
Ectodermo/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Faringe/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Animales , Región Branquial/embriología , Región Branquial/metabolismo , Epitelio/embriología , Epitelio/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Fosfoproteínas/genética , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo
16.
Stem Cell Reports ; 6(2): 200-12, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26777058

RESUMEN

Reports on the retention of somatic cell memory in induced pluripotent stem cells (iPSCs) have complicated the selection of the optimal cell type for the generation of iPSC biobanks. To address this issue we compared transcriptomic, epigenetic, and differentiation propensities of genetically matched human iPSCs derived from fibroblasts and blood, two tissues of the most practical relevance for biobanking. Our results show that iPSC lines derived from the same donor are highly similar to each other. However, genetic variation imparts a donor-specific expression and methylation profile in reprogrammed cells that leads to variable functional capacities of iPSC lines. Our results suggest that integration-free, bona fide iPSC lines from fibroblasts and blood can be combined in repositories to form biobanks. Due to the impact of genetic variation on iPSC differentiation, biobanks should contain cells from large numbers of donors.


Asunto(s)
Diferenciación Celular/genética , Variación Genética , Células Madre Pluripotentes Inducidas/citología , Bancos de Muestras Biológicas , Metilación de ADN/genética , Epigénesis Genética , Células Eritroides/citología , Femenino , Fibroblastos/metabolismo , Hematopoyesis/genética , Humanos , Masculino , Donantes de Tejidos , Transcripción Genética
17.
Stem Cell Res ; 15(1): 266-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26093941

RESUMEN

Human iPSC line HEL24.3 was generated from healthy human foreskin fibroblasts using non-integrative reprogramming method. Reprogramming factors Oct3/4, Sox2, Klf4, and cMyc were delivered using Sendai viruses.


Asunto(s)
Línea Celular/citología , Fibroblastos/citología , Prepucio/citología , Células Madre Pluripotentes Inducidas/citología , Salud , Humanos , Recién Nacido , Factor 4 Similar a Kruppel , Masculino
18.
Stem Cell Res ; 15(1): 263-5, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26096151

RESUMEN

Human iPSC line HEL47.2 was generated from healthy 83-year old male dermal fibroblasts using non-integrative reprogramming method. Reprogramming factors Oct3/4, Sox2, Klf4, and cMyc were delivered using Sendai viruses.


Asunto(s)
Línea Celular/citología , Fibroblastos/citología , Salud , Células Madre Pluripotentes Inducidas/citología , Adulto , Anciano de 80 o más Años , Reprogramación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Prepucio/citología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Factor 4 Similar a Kruppel , Masculino , Factores de Transcripción/farmacología
19.
Stem Cell Res ; 15(1): 254-62, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26096152

RESUMEN

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSC) by the forced expression of the transcription factors OCT4, SOX2, KLF4 and c-MYC. Pluripotent reprogramming appears as a slow and inefficient process because of genetic and epigenetic barriers of somatic cells. In this report, we have extended previous observations concerning donor age and passage number of human fibroblasts as critical determinants of the efficiency of iPSC induction. Human fibroblasts from 11 different donors of variable age were reprogrammed by ectopic expression of reprogramming factors. Although all fibroblasts gave rise to iPSC colonies, the reprogramming efficiency correlated negatively and declined rapidly with increasing donor age. In addition, the late passage fibroblasts gave less reprogrammed colonies than the early passage cell counterparts, a finding associated with the cellular senescence-induced upregulation of p21. Knockdown of p21 restored iPSC generation even in long-term passaged fibroblasts of an old donor, highlighting the central role of the p53/p21 pathway in cellular senescence induced by both donor age and culture time.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/citología , Donantes de Tejidos , Adolescente , Adulto , Factores de Edad , Anciano de 80 o más Años , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lactante , Recién Nacido , Factor 4 Similar a Kruppel , Masculino , Persona de Mediana Edad , Retroviridae/metabolismo , Virus Sendai/metabolismo , Factores de Tiempo , Adulto Joven
20.
Stem Cell Reports ; 5(3): 448-59, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26352799

RESUMEN

CRISPR/Cas9 protein fused to transactivation domains can be used to control gene expression in human cells. In this study, we demonstrate that a dCas9 fusion with repeats of VP16 activator domains can efficiently activate human genes involved in pluripotency in various cell types. This activator in combination with guide RNAs targeted to the OCT4 promoter can be used to completely replace transgenic OCT4 in human cell reprogramming. Furthermore, we generated a chemically controllable dCas9 activator version by fusion with the dihydrofolate reductase (DHFR) destabilization domain. Finally, we show that the destabilized dCas9 activator can be used to control human pluripotent stem cell differentiation into endodermal lineages.


Asunto(s)
Sistemas CRISPR-Cas , Diferenciación Celular , Técnicas de Reprogramación Celular , Reprogramación Celular , Regulación de la Expresión Génica , Adolescente , Anciano , Femenino , Células HEK293 , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA