Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Ther ; 31(5): 1225-1230, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36698310

RESUMEN

Extracellular vesicles (EVs) are esteemed as a promising delivery vehicle for various genetic therapeutics. They are relatively inert, non-immunogenic, biodegradable, and biocompatible. At least in rodents, they can even transit challenging bodily hurdles such as the blood-brain barrier. Constitutively shed by all cells and with the potential to interact specifically with neighboring and distant targets, EVs can be engineered to carry and deliver therapeutic molecules such as proteins and RNAs. EVs are thus emerging as an elegant in vivo gene therapy vector. Deeper understanding of basic EV biology-including cellular production, EV loading, systemic distribution, and cell delivery-is still needed for effective harnessing of these endogenous cellular nanoparticles as next-generation nanodelivery tools. However, even a perfect EV product will be challenging to produce at clinical scale. In this regard, we propose that vector transduction technologies can be used to convert cells either ex vivo or directly in vivo into EV factories for stable, safe modulation of gene expression and function. Here, we extrapolate from the current EV state of the art to a bright potential future using EVs to treat genetic diseases that are refractory to current therapeutics.


Asunto(s)
Vesículas Extracelulares , Nanopartículas , Vesículas Extracelulares/metabolismo , ARN/metabolismo , Proteínas/metabolismo , Terapia Genética
2.
Retrovirology ; 14(1): 4, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28114951

RESUMEN

BACKGROUND: HIV-1 hijacks host cell machinery to ensure successful replication, including cytoskeletal components for intracellular trafficking, nucleoproteins for pre-integration complex import, and the ESCRT pathway for assembly and budding. It is widely appreciated that cellular post-translational modifications (PTMs) regulate protein activity within cells; however, little is known about how PTMs influence HIV replication. Previously, we reported that blocking deacetylation of tubulin using histone deacetylase inhibitors promoted the kinetics and efficiency of early post-entry viral events. To uncover additional PTMs that modulate entry and early post-entry stages in HIV infection, we employed a flow cytometric approach to assess a panel of small molecule inhibitors on viral fusion and LTR promoter-driven gene expression. RESULTS: While viral fusion was not significantly affected, early post-entry viral events were modulated by drugs targeting multiple processes including histone deacetylation, methylation, and bromodomain inhibition. Most notably, we observed that inhibitors of the Rho GTPase family of cytoskeletal regulators-including RhoA, Cdc42, and Rho-associated kinase signaling pathways-significantly reduced viral infection. Using phosphoproteomics and a biochemical GTPase activation assay, we found that virion-induced signaling via CD4 and CCR5 activated Rho family GTPases including Rac1 and Cdc42 and led to widespread modification of GTPase signaling-associated factors. CONCLUSIONS: Together, these data demonstrate that HIV signaling activates members of the Rho GTPase family of cytoskeletal regulators that are required for optimal HIV infection of primary CD4+ T cells.


Asunto(s)
Antígenos CD4/metabolismo , Linfocitos T CD4-Positivos/virología , VIH/fisiología , Receptores CCR5/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Células Cultivadas , Interacciones Huésped-Patógeno , Humanos , Integración Viral , Internalización del Virus
3.
ACS Nano ; 18(39): 26568-26584, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39306763

RESUMEN

The individual detection of human immunodeficiency virus (HIV) virions and resolution from extracellular vesicles (EVs) during analysis is a difficult challenge. Infectious enveloped virions and nonviral EVs are released simultaneously by HIV-infected host cells, in addition to hybrid viral EVs containing combinations of HIV and host components but lacking replicative ability. Complicating the issue, EVs and enveloped virions are both delimited by a lipid bilayer and share similar size and density. The feature that distinguishes infectious virions from host and hybrid EVs is the HIV genomic RNA (gRNA), which allows the virus to replicate. Single-particle analysis techniques, which provide snapshots of single biological nanoparticles, could resolve infectious virions from EVs. However, current single-particle analysis techniques focus mainly on protein detection, which fail to resolve hybrid EVs from infectious virions. A method to simultaneously detect viral protein and internal gRNA in the same particle would allow resolution of infectious HIV from EVs and noninfectious virions. Here, we introduce SPIRFISH, a high-throughput method for single-particle protein and RNA analysis, combining single particle interferometric reflectance imaging sensor with single-molecule fluorescence in situ hybridization. Using SPIRFISH, we detect HIV-1 envelope protein gp120 and genomic RNA within single infectious virions, allowing resolution against EV background and noninfectious virions. We further show that SPIRFISH can be used to detect specific RNAs within EVs. This may have major utility for EV therapeutics, which are increasingly focused on EV-mediated RNA delivery. SPIRFISH should enable single particle analysis of a broad class of RNA-containing nanoparticles.


Asunto(s)
Vesículas Extracelulares , VIH-1 , ARN Viral , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/virología , Humanos , ARN Viral/genética , ARN Viral/metabolismo , VIH-1/genética , Hibridación Fluorescente in Situ , Proteínas Virales/metabolismo , Proteínas Virales/química
4.
Adv Mater ; 35(24): e2207826, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36592157

RESUMEN

Extracellular vesicles (EVs) are heterogeneous, phospholipid bilayer-enclosed biological particles that regulate cell communication by molecular cargo delivery and surface signaling. EVs are secreted by almost all living cells, including plant cells. Plant-derived vesicle-like nanoparticles (PDVLNs) is a generic term referring to vesicle-like nanostructure particles isolated from plants. Their low immunogenicity and wide availability make PDVLNs safer and more economical to be developed as therapeutic agents and drug carriers. Accumulating evidence indicates the key roles of PDVLNs in regulating interkingdom crosstalk between humans and plants. PDVLNs are capable of entering the human-body systemand delivering effector molecules to cells that modulate cell-signaling pathways. PDVLNs released by or obtained from plants thus have great influenceon human health and diseases. In this review, the biogenesis, detailed preparation methods, various physical and biochemical characteristics, biosafety, and preservation of PDVLNs are introduced, along with how these characteristics pertain to their biosafety and preservability. The potential applications of PDVLNs on different plant and mammalian diseases and PDVLN research standardization are then systematically discussed.


Asunto(s)
Vesículas Extracelulares , Nanopartículas , Animales , Humanos , Vesículas Extracelulares/metabolismo , Plantas , Portadores de Fármacos/metabolismo , Comunicación Celular , Mamíferos
5.
J Extracell Vesicles ; 10(8): e12112, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34188786

RESUMEN

In late 2019, a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China. SARS-CoV-2 and the disease it causes, coronavirus disease 2019 (COVID-19), spread rapidly and became a global pandemic in early 2020. SARS-CoV-2 spike protein is responsible for viral entry and binds to angiotensin converting enzyme 2 (ACE2) on host cells, making it a major target of the immune system - particularly neutralizing antibodies (nAbs) that are induced by infection or vaccines. Extracellular vesicles (EVs) are small membraned particles constitutively released by cells, including virally-infected cells. EVs and viruses enclosed within lipid membranes share some characteristics: they are small, sub-micron particles and they overlap in cellular biogenesis and egress routes. Given their shared characteristics, we hypothesized that EVs released from spike-expressing cells could carry spike and serve as decoys for anti-spike nAbs, promoting viral infection. Here, using mass spectrometry and nanoscale flow cytometry (NFC) approaches, we demonstrate that SARS-CoV-2 spike protein can be incorporated into EVs. Furthermore, we show that spike-carrying EVs act as decoy targets for convalescent patient serum-derived nAbs, reducing their effectiveness in blocking viral entry. These findings have important implications for the pathogenesis of SARS-CoV-2 infection in vivo and highlight the complex interplay between viruses, extracellular vesicles, and the immune system that occurs during viral infections.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , COVID-19/terapia , Vesículas Extracelulares/química , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , COVID-19/inmunología , COVID-19/virología , Citometría de Flujo , Células HEK293 , Humanos , Inmunización Pasiva , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/análisis , Sueroterapia para COVID-19
6.
Gut Microbes ; 13(1): 1946368, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34313547

RESUMEN

Over the past three decades the United States has experienced a devastating opioid epidemic. One of the many debilitating side effects of chronic opioid use is opioid-induced bowel dysfunction. We investigated the impact of methadone maintenance treatment (MMT) on the gut microbiome, the gut bacterial metabolite profile, and intestinal barrier integrity. An imbalance in key bacterial communities required for production of short-chain fatty acids (SCFAs), mucus degradation, and maintenance of barrier integrity was identified. Consistent with dysbiosis, levels of fecal SCFAs were reduced in MMT. We demonstrated that metabolites synthesized by Akkermansia muciniphila modulate intestinal barrier integrity in vitro by strengthening the pore pathway and regulating tight junction protein expression. This study provides essential information about the therapeutic potential of A. muciniphila and warrants development of new clinical strategies that aim to normalize the gut microbiome in individuals affected by chronic opioid use.


Asunto(s)
Analgésicos Opioides/efectos adversos , Disbiosis/inducido químicamente , Disbiosis/fisiopatología , Microbioma Gastrointestinal/efectos de los fármacos , Metadona/uso terapéutico , Trastornos Relacionados con Opioides/tratamiento farmacológico , Trastornos Relacionados con Opioides/fisiopatología , Adulto , Analgésicos Opioides/uso terapéutico , Animales , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Trastornos Relacionados con Opioides/epidemiología , Estados Unidos
7.
ExRNA ; 32021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35846733
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA