Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105669, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272221

RESUMEN

The mitotic spindle contains many bundles of microtubules (MTs) including midzones and kinetochore fibers, but little is known about how bundled structures are formed. Here, we show that the chromosomal passenger complex (CPC) purified from Escherichia coli undergoes liquid-liquid demixing in vitro. An emergent property of the resultant condensates is to generate parallel MT bundles when incubated with free tubulin and GTP in vitro. We demonstrate that MT bundles emerge from CPC droplets with protruding minus ends that then grow into long and tapered MT structures. During this growth, we found that the CPC in these condensates apparently reorganize to coat and bundle the resulting MT structures. CPC mutants attenuated for liquid-liquid demixing or MT binding prevented the generation of parallel MT bundles in vitro and reduced the number of MTs present at spindle midzones in HeLa cells. Our data demonstrate that an in vitro biochemical activity to produce MT bundles emerges after the concentration of the CPC and provides models for how cells generate parallel-bundled MT structures that are important for the assembly of the mitotic spindle. Moreover, these data suggest that cells contain MT-organizing centers that generate MT bundles that emerge with the opposite polarity from centrosomes.


Asunto(s)
Cromosomas , Microtúbulos , Huso Acromático , Humanos , Células HeLa , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitosis , Huso Acromático/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Animales , Xenopus laevis
2.
Artículo en Inglés | MEDLINE | ID: mdl-29250483

RESUMEN

Fluorescent protein-based biosensors are indispensable molecular tools for life science research. The invention and development of high-fidelity biosensors for a particular molecule or molecular event often catalyze important scientific breakthroughs. Understanding the structural and functional organization of brain activities remain a subject for which optical sensors are in desperate need and of growing interest. Here, we review genetically encoded fluorescent sensors for imaging neuronal activities with a focus on the design principles and optimizations of various sensors. New bioluminescent sensors useful for deep-tissue imaging are also discussed. By highlighting the protein engineering efforts and experimental applications of these sensors, we can consequently analyze factors influencing their performance. Finally, we remark on how future developments can fill technological gaps and lead to new discoveries.

3.
Sci Rep ; 5: 12632, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26220470

RESUMEN

We utilized several computational approaches to evaluate the binding energies of tyrosine (Tyr) and several unnatural Tyr analogs, to several orthogonal aaRSes derived from Methanocaldococcus jannaschii and Escherichia coli tyrosyl-tRNA synthetases. The present study reveals the following: (1) AutoDock Vina and ROSETTA were able to distinguish binding energy differences for individual pairs of favorable and unfavorable aaRS-amino acid complexes, but were unable to cluster together all experimentally verified favorable complexes from unfavorable aaRS-Tyr complexes; (2) MD-MM/PBSA provided the best prediction accuracy in terms of clustering favorable and unfavorable enzyme-substrate complexes, but also required the highest computational cost; and (3) MM/PBSA based on single energy-minimized structures has a significantly lower computational cost compared to MD-MM/PBSA, but still produced sufficiently accurate predictions to cluster aaRS-amino acid interactions. Although amino acid-aaRS binding is just the first step in a complex series of processes to acylate a tRNA with its corresponding amino acid, the difference in binding energy, as shown by MD-MM/PBSA, is important for a mutant orthogonal aaRS to distinguish between a favorable unnatural amino acid (unAA) substrate from unfavorable natural amino acid substrates. Our computational study should assist further designing and engineering of orthogonal aaRSes for the genetic encoding of novel unAAs.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Arqueales/metabolismo , Proteínas de Escherichia coli/metabolismo , Tirosina-ARNt Ligasa/metabolismo , Tirosina/metabolismo , Aminoácidos/química , Proteínas Arqueales/química , Proteínas Arqueales/genética , Biología Computacional/métodos , Transferencia de Energía , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Methanococcus/enzimología , Methanococcus/genética , Methanococcus/metabolismo , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Reproducibilidad de los Resultados , Tirosina/química , Tirosina-ARNt Ligasa/química , Tirosina-ARNt Ligasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA